MCU ARM 64KB FLASH/TIMER 100LQFP

STM32F101V8T6

Manufacturer Part NumberSTM32F101V8T6
DescriptionMCU ARM 64KB FLASH/TIMER 100LQFP
ManufacturerSTMicroelectronics
SeriesSTM32
STM32F101V8T6 datasheet
 

Specifications of STM32F101V8T6

Core ProcessorARM® Cortex-M3™Core Size32-Bit
Speed36MHzConnectivityI²C, IrDA, LIN, SPI, UART/USART
PeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber Of I /o80
Program Memory Size64KB (64K x 8)Program Memory TypeFLASH
Ram Size10K x 8Voltage - Supply (vcc/vdd)2 V ~ 3.6 V
Data ConvertersA/D 16x12bOscillator TypeInternal
Operating Temperature-40°C ~ 85°CPackage / Case100-LQFP
Processor SeriesSTM32F101xCoreARM Cortex M3
Data Bus Width32 bitData Ram Size10 KB
Interface TypeI2C, SPI, USARTMaximum Clock Frequency36 MHz
Number Of Programmable I/os100Number Of Timers3 x 16 bit
Operating Supply Voltage2 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsEWARM, EWARM-BL, MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature- 40 COn-chip Adc12 bit, 16 Channel
For Use With497-10030 - STARTER KIT FOR STM32497-8853 - BOARD DEMO STM32 UNIV USB-UUSCIKSDKSTM32-PL - KIT IAR KICKSTART STM32 CORTEXM3497-8512 - KIT STARTER FOR STM32F10XE MCU497-8505 - KIT STARTER FOR STM32F10XE MCU497-8304 - KIT STM32 MOTOR DRIVER BLDC497-6438 - BOARD EVALUTION FOR STM32 512K497-6289 - KIT PERFORMANCE STICK FOR STM32MCBSTM32UME - BOARD EVAL MCBSTM32 + ULINK-MEMCBSTM32U - BOARD EVAL MCBSTM32 + ULINK2497-6053 - KIT STARTER FOR STM32497-6052 - KIT STARTER FOR STM32497-6050 - KIT STARTER FOR STM32497-6049 - KIT EVALUATION LOW COST STM32497-6048 - BOARD EVALUATION FOR STM32497-6047 - KIT DEVELOPMENT FOR STM32497-5046 - KIT TOOL FOR ST7/UPSD/STR7 MCULead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Other names497-6060
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Page 51
52
Page 52
53
Page 53
54
Page 54
55
Page 55
56
Page 56
57
Page 57
58
Page 58
59
Page 59
60
Page 60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Page 51/87

Download datasheet (2Mb)Embed
PrevNext
STM32F101x8, STM32F101xB
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in
defined in application note AN1709.
Table 29.
EMS characteristics
Symbol
Voltage limits to be applied on any I/O pin to
V
FESD
induce a functional disturbance
Fast transient voltage burst limits to be
V
applied through 100 pF on V
EFTB
to induce a functional disturbance
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and pre
qualification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second. To complete these trials, ESD stress can be applied directly on the device, over the
range of specification values. When unexpected behavior is detected, the software can be
hardened to prevent unrecoverable errors occurring (see application note AN1015).
Table
29. They are based on the EMS levels and classes
Parameter
V
DD
f
HCLK
conforms to IEC 61000-4-2
V
DD
and V
pins
f
DD
SS
HCLK
conforms to IEC 61000-4-4
Doc ID 13586 Rev 14
Electrical characteristics
and
DD
Conditions
Level/Class
= 3.3 V, T
= +25 °C,
A
= 36 MHz
2B
= 3.3 V, T
= +25 °C,
A
= 36 MHz
4A
51/87