MCU ARM 64KB FLASH/TIMER 100LQFP

STM32F101V8T6

Manufacturer Part NumberSTM32F101V8T6
DescriptionMCU ARM 64KB FLASH/TIMER 100LQFP
ManufacturerSTMicroelectronics
SeriesSTM32
STM32F101V8T6 datasheet
 


Specifications of STM32F101V8T6

Core ProcessorARM® Cortex-M3™Core Size32-Bit
Speed36MHzConnectivityI²C, IrDA, LIN, SPI, UART/USART
PeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber Of I /o80
Program Memory Size64KB (64K x 8)Program Memory TypeFLASH
Ram Size10K x 8Voltage - Supply (vcc/vdd)2 V ~ 3.6 V
Data ConvertersA/D 16x12bOscillator TypeInternal
Operating Temperature-40°C ~ 85°CPackage / Case100-LQFP
Processor SeriesSTM32F101xCoreARM Cortex M3
Data Bus Width32 bitData Ram Size10 KB
Interface TypeI2C, SPI, USARTMaximum Clock Frequency36 MHz
Number Of Programmable I/os100Number Of Timers3 x 16 bit
Operating Supply Voltage2 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsEWARM, EWARM-BL, MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature- 40 COn-chip Adc12 bit, 16 Channel
For Use With497-10030 - STARTER KIT FOR STM32497-8853 - BOARD DEMO STM32 UNIV USB-UUSCIKSDKSTM32-PL - KIT IAR KICKSTART STM32 CORTEXM3497-8512 - KIT STARTER FOR STM32F10XE MCU497-8505 - KIT STARTER FOR STM32F10XE MCU497-8304 - KIT STM32 MOTOR DRIVER BLDC497-6438 - BOARD EVALUTION FOR STM32 512K497-6289 - KIT PERFORMANCE STICK FOR STM32MCBSTM32UME - BOARD EVAL MCBSTM32 + ULINK-MEMCBSTM32U - BOARD EVAL MCBSTM32 + ULINK2497-6053 - KIT STARTER FOR STM32497-6052 - KIT STARTER FOR STM32497-6050 - KIT STARTER FOR STM32497-6049 - KIT EVALUATION LOW COST STM32497-6048 - BOARD EVALUATION FOR STM32497-6047 - KIT DEVELOPMENT FOR STM32497-5046 - KIT TOOL FOR ST7/UPSD/STR7 MCULead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Other names497-6060
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Page 41
42
Page 42
43
Page 43
44
Page 44
45
Page 45
46
Page 46
47
Page 47
48
Page 48
49
Page 49
50
Page 50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Page 46/87

Download datasheet (2Mb)Embed
PrevNext
Electrical characteristics
Table 21.
HSE 4-16 MHz oscillator characteristics
Symbol
f
Oscillator frequency
OSC_IN
R
Feedback resistor
F
Recommended load capacitance
C
versus equivalent serial
resistance of the crystal (R
i
HSE driving current
2
g
Oscillator transconductance
m
(4)
t
Startup time
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. t
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For C
and C
, it is recommended to use high-quality external ceramic capacitors in the
L1
L2
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of C
can be used as a rough estimate of the combined pin and board capacitance) when sizing
C
and C
. Refer to the application note AN2867 “Oscillator design guide for ST
L1
L2
microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
C L2
1. R
value depends on the crystal characteristics.
EXT
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
46/87
Parameter
= 30 Ω
R
S
(3)
)
S
V
DD
with 30 pF load
Startup
V
DD
and C
. PCB and MCU pin capacitance must be included (10 pF
L1
L2
C L1
OSC_IN
8 MH z
R F
resonator
OSC_OU T
R EXT (1)
Doc ID 13586 Rev 14
STM32F101x8, STM32F101xB
(1)(2)
Conditions
Min
Typ
4
8
200
30
= 3.3 V, V
= V
IN
SS
25
is stabilized
2
Figure
21). C
and C
are usually the
L1
L2
f HSE
Bias
controlled
gain
STM32F10xxx
Table
22. In the application,
Max
Unit
16
MHz
pF
1
mA
mA/V
ms
ai14128b