MCU ARM 64KB FLASH/TIMER 100LQFP

STM32F101V8T6

Manufacturer Part NumberSTM32F101V8T6
DescriptionMCU ARM 64KB FLASH/TIMER 100LQFP
ManufacturerSTMicroelectronics
SeriesSTM32
STM32F101V8T6 datasheet
 

Specifications of STM32F101V8T6

Core ProcessorARM® Cortex-M3™Core Size32-Bit
Speed36MHzConnectivityI²C, IrDA, LIN, SPI, UART/USART
PeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber Of I /o80
Program Memory Size64KB (64K x 8)Program Memory TypeFLASH
Ram Size10K x 8Voltage - Supply (vcc/vdd)2 V ~ 3.6 V
Data ConvertersA/D 16x12bOscillator TypeInternal
Operating Temperature-40°C ~ 85°CPackage / Case100-LQFP
Processor SeriesSTM32F101xCoreARM Cortex M3
Data Bus Width32 bitData Ram Size10 KB
Interface TypeI2C, SPI, USARTMaximum Clock Frequency36 MHz
Number Of Programmable I/os100Number Of Timers3 x 16 bit
Operating Supply Voltage2 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsEWARM, EWARM-BL, MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature- 40 COn-chip Adc12 bit, 16 Channel
For Use With497-10030 - STARTER KIT FOR STM32497-8853 - BOARD DEMO STM32 UNIV USB-UUSCIKSDKSTM32-PL - KIT IAR KICKSTART STM32 CORTEXM3497-8512 - KIT STARTER FOR STM32F10XE MCU497-8505 - KIT STARTER FOR STM32F10XE MCU497-8304 - KIT STM32 MOTOR DRIVER BLDC497-6438 - BOARD EVALUTION FOR STM32 512K497-6289 - KIT PERFORMANCE STICK FOR STM32MCBSTM32UME - BOARD EVAL MCBSTM32 + ULINK-MEMCBSTM32U - BOARD EVAL MCBSTM32 + ULINK2497-6053 - KIT STARTER FOR STM32497-6052 - KIT STARTER FOR STM32497-6050 - KIT STARTER FOR STM32497-6049 - KIT EVALUATION LOW COST STM32497-6048 - BOARD EVALUATION FOR STM32497-6047 - KIT DEVELOPMENT FOR STM32497-5046 - KIT TOOL FOR ST7/UPSD/STR7 MCULead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Other names497-6060
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Page 21
22
Page 22
23
Page 23
24
Page 24
25
Page 25
26
Page 26
27
Page 27
28
Page 28
29
Page 29
30
Page 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Page 27/87

Download datasheet (2Mb)Embed
PrevNext
STM32F101x8, STM32F101xB
Table 4.
Medium-density STM32F101xx pin definitions (continued)
Pins
Pin name
-
-
86
-
PD5
-
-
87
-
PD6
-
-
88
-
PD7
39
55
89
30
PB3
40
56
90
31
PB4
41
57
91
32
PB5
42
58
92
33
PB6
43
59
93
34
PB7
44
60
94
35
BOOT0
45
61
95
-
PB8
46
62
96
-
PB9
-
-
97
-
PE0
-
-
98
-
PE1
47
63
99
36
V
SS_3
48
64
100
1
V
DD_3
1. I = input, O = output, S = supply, HiZ= high impedance.
2. FT= 5 V tolerant.
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower
number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be
called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load
of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as
OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For
the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to
the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode.
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
from the STMicroelectronics website: www.st.com.
Main
(3)
function
(after reset)
I/O
FT
PD5
I/O
FT
PD6
I/O
FT
PD7
I/O
FT
JTDO
I/O
FT
JNTRST
I/O
PB5
I/O
FT
PB6
I/O
FT
PB7
I
BOOT0
I/O
FT
PB8
I/O
FT
PB9
I/O
FT
PE0
I/O
FT
PE1
S
V
SS_3
S
V
DD_3
Table 2 on page
Doc ID 13586 Rev 14
Pinouts and pin description
(3)(4)
Alternate functions
Default
Remap
USART2_TX
USART2_RX
USART2_CK
TIM2_CH2 / PB3
TRACESWO
SPI1_SCK
PB4 / TIM3_CH1
SPI1_MISO
TIM3_CH2 /
I2C1_SMBAl
SPI1_MOSI
(8)
I2C1_SCL
/
USART1_TX
(8)
TIM4_CH1
(8)
I2C1_SDA
/
USART1_RX
(8)
TIM4_CH2
(8)
TIM4_CH3
I2C1_SCL
(8)
TIM4_CH4
I2C1_SDA
TIM4_ETR
11.
27/87