IC MCU 8BIT OTP/EPROM 28 PSOIC

ST62T65CM6

Manufacturer Part NumberST62T65CM6
DescriptionIC MCU 8BIT OTP/EPROM 28 PSOIC
ManufacturerSTMicroelectronics
SeriesST6
ST62T65CM6 datasheet
 


Specifications of ST62T65CM6

Core ProcessorST6Core Size8-Bit
Speed8MHzConnectivitySPI
PeripheralsLED, LVD, POR, WDTNumber Of I /o21
Program Memory Size3.8KB (3.8K x 8)Program Memory TypeOTP
Eeprom Size128 x 8Ram Size128 x 8
Voltage - Supply (vcc/vdd)3 V ~ 6 VData ConvertersA/D 13x8b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case28-SOIC (7.5mm Width)Controller Family/seriesST6
No. Of I/o's21Eeprom Memory Size128Byte
Ram Memory Size128ByteCpu Speed8MHz
No. Of Timers2Rohs CompliantYes
Processor SeriesST62T6xCoreST6
Data Bus Width8 bitData Ram Size128 B
Interface TypeSCIMaximum Clock Frequency8 MHz
Number Of Programmable I/os21Number Of Timers1
Operating Supply Voltage3 V to 6 VMaximum Operating Temperature+ 125 C
Mounting StyleSMD/SMTDevelopment Tools By SupplierST62GP-EMU2, ST62E2XC-EPB/110, ST62E6XC-EPB/US, STREALIZER-II
Minimum Operating Temperature- 40 COn-chip Adc8 bit
Lead Free Status / RoHS StatusLead free / RoHS CompliantOther names497-2103-5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Page 41
42
Page 42
43
Page 43
44
Page 44
45
Page 45
46
Page 46
47
Page 47
48
Page 48
49
Page 49
50
Page 50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Page 45/84

Download datasheet (2Mb)Embed
PrevNext
4.3 AUTO-RELOAD TIMER
The Auto-Reload Timer (AR Timer) on-chip pe-
ripheral consists of an 8-bit timer/counter with
compare and capture/reload capabilities and of a
7-bit prescaler with a clock multiplexer, enabling
the clock input to be selected as f
external clock source. A Mode Control Register,
ARMC, two Status Control Registers, ARSC0 and
ARSC1, an output pin, ARTIMout, and an input
pin, ARTIMin, allow the Auto-Reload Timer to be
used in 4 modes:
– Auto-reload (PWM generation),
– Output compare and reload on external event
(PLL),
– Input capture and output compare for time meas-
urement.
– Input capture and output compare for period
measurement.
The AR Timer can be used to wake the MCU from
WAIT mode either with an internal or with an exter-
nal clock. It also can be used to wake the MCU
from STOP mode, if used with an external clock
signal connected to the ARTIMin pin. A Load reg-
ister allows the program to read and write the
counter on the fly.
4.3.1 AR Timer Description
The AR COUNTER is an 8-bit up-counter incre-
mented on the input clock’s rising edge. The coun-
ter is loaded from the ReLoad/Capture Register,
ARRC, for auto-reload or capture operations, as
well as for initialization. Direct access to the AR
counter is not possible; however, by reading or
writing the ARLR load register, it is possible to
read or write the counter’s contents on the fly.
The AR Timer’s input clock can be either the inter-
nal clock (from the Oscillator Divider), the internal
clock divided by 3, or the clock signal connected to
the ARTIMin pin. Selection between these clock
sources is effected by suitably programming bits
CC0-CC1 of the ARSC1 register. The output of the
AR Multiplexer feeds the 7-bit programmable AR
Prescaler, ARPSC, which selects one of the 8
available taps of the prescaler, as defined by
PSC0-PSC2 in the AR Mode Control Register.
Thus the division factor of the prescaler can be set
to 2n (where n = 0, 1,..7).
The clock input to the AR counter is enabled by the
TEN (Timer Enable) bit in the ARMC register.
When TEN is reset, the AR counter is stopped and
the prescaler and counter contents are frozen.
When TEN is set, the AR counter runs at the rate
of the selected clock source. The counter is
cleared on system reset.
, f
or an
INT
INT/3
The AR counter may also be initialized by writing
to the ARLR load register, which also causes an
immediate copy of the value to be placed in the AR
counter, regardless of whether the counter is run-
ning or not. Initialization of the counter, by either
method, will also clear the ARPSC register, where-
upon counting will start from a known value.
4.3.2 Timer Operating Modes
Four different operating modes are available for
the AR Timer:
Auto-reload Mode with PWM Generation. This
mode allows a Pulse Width Modulated signal to be
generated on the ARTIMout pin with minimum
Core processing overhead.
The free running 8-bit counter is fed by the pres-
caler’s output, and is incremented on every rising
edge of the clock signal.
When a counter overflow occurs, the counter is
automatically reloaded with the contents of the Re-
load/Capture Register, ARCC, and ARTIMout is
set. When the counter reaches the value con-
tained in the compare register (ARCP), ARTIMout
is reset.
On overflow, the OVF flag of the ARSC0 register is
set and an overflow interrupt request is generated
if the overflow interrupt enable bit, OVIE, in the
Mode Control Register (ARMC), is set. The OVF
flag must be reset by the user software.
When the counter reaches the compare value, the
CPF flag of the ARSC0 register is set and a com-
pare interrupt request is generated, if the Compare
Interrupt enable bit, CPIE, in the Mode Control
Register (ARMC), is set. The interrupt service rou-
tine may then adjust the PWM period by loading a
new value into ARCP. The CPF flag must be reset
by user software.
The PWM signal is generated on the ARTIMout
pin (refer to the Block Diagram). The frequency of
this signal is controlled by the prescaler setting
and by the auto-reload value present in the Re-
load/Capture register, ARRC. The duty cycle of
the PWM signal is controlled by the Compare Reg-
ister, ARCP.
ST6255C ST6265C ST6265B
45/84