ATmega1284RZAP Atmel Corporation, ATmega1284RZAP Datasheet - Page 248

no-image

ATmega1284RZAP

Manufacturer Part Number
ATmega1284RZAP
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega1284RZAP

Flash (kbytes)
128 Kbytes
Max. Operating Frequency
20 MHz
Max I/o Pins
32
Spi
3
Twi (i2c)
1
Uart
2
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Crypto Engine
No
Sram (kbytes)
16
Eeprom (bytes)
4096
Operating Voltage (vcc)
1.8 to 3.6
Timers
3
Frequency Band
2.4 GHz
Max Data Rate (mb/s)
0.25
Antenna Diversity
No
External Pa Control
No
Power Output (dbm)
3
Receiver Sensitivity (dbm)
-101
Receive Current Consumption (ma)
16.0
Transmit Current Consumption (ma)
17.0
Link Budget (dbm)
104
21.7
21.7.1
8059D–AVR–11/09
ADC Noise Canceler
Analog Input Circuitry
If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.
If differential channels are used, the selected reference should not be closer to AVCC than
indicated in
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. If the ADC is enabled in such
sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.
The Analog Input Circuitry for single ended channels is illustrated in Figure 21-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).
The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.
a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
Mode must be selected and the ADC conversion complete interrupt must be enabled.
once the CPU has been halted.
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.
Table 26-8 on page
331.
ATmega1284P
248

Related parts for ATmega1284RZAP