ATMEGA16U2-MU Atmel, ATMEGA16U2-MU Datasheet - Page 12

no-image

ATMEGA16U2-MU

Manufacturer Part Number
ATMEGA16U2-MU
Description
MCU AVR 16K FLASH USB 32-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16U2-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Core
AVR8
Processor Series
ATMEGA16x
Data Bus Width
8 bit
Maximum Clock Frequency
16 MHz
Data Ram Size
1.25 KB
Data Rom Size
512 B
Number Of Programmable I/os
22
Number Of Timers
2
Mounting Style
SMD/SMT
Height
0.95 mm
Interface Type
SPI, UART
Length
5 mm
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
5 mm
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATMEGA16U2-MU
Quantity:
250
6.6.1
6.7
7799D–AVR–11/10
Instruction Execution Timing
SPH and SPL – Stack Pointer High and Low Register
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk
chip. No internal clock division is used.
Figure 6-4
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.
Figure 6-4.
Figure 6-5
operation using two register operands is executed, and the result is stored back to the destina-
tion register.
Figure 6-5.
Bit
0x3E (0x5E)
0x3D (0x5D)
Read/Write
Initial Value
Register Operands Fetch
2nd Instruction Execute
3rd Instruction Execute
1st Instruction Execute
ALU Operation Execute
2nd Instruction Fetch
3rd Instruction Fetch
4th Instruction Fetch
1st Instruction Fetch
Total Execution Time
shows the internal timing concept for the Register File. In a single clock cycle an ALU
shows the parallel instruction fetches and instruction executions enabled by the Har-
Result Write Back
The Parallel Instruction Fetches and Instruction Executions
Single Cycle ALU Operation
15
SP15
SP7
7
R/W
R/W
0
1
clk
clk
CPU
CPU
14
SP14
SP6
6
R/W
R/W
0
1
13
SP13
SP5
5
R/W
R/W
1
1
CPU
T1
T1
, directly generated from the selected clock source for the
12
SP12
SP4
4
R/W
R/W
0
1
ATmega8U2/16U2/32U2
11
SP11
SP3
3
R/W
R/W
0
1
T2
T2
10
SP10
SP2
2
R/W
R/W
0
1
T3
T3
9
SP9
SP1
1
R/W
R/W
0
1
8
SP8
SP0
0
R/W
R/W
0
1
T4
T4
SPH
SPL
12

Related parts for ATMEGA16U2-MU