ATMEGA16U2-MU Atmel, ATMEGA16U2-MU Datasheet - Page 29

no-image

ATMEGA16U2-MU

Manufacturer Part Number
ATMEGA16U2-MU
Description
MCU AVR 16K FLASH USB 32-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16U2-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Core
AVR8
Processor Series
ATMEGA16x
Data Bus Width
8 bit
Maximum Clock Frequency
16 MHz
Data Ram Size
1.25 KB
Data Rom Size
512 B
Number Of Programmable I/os
22
Number Of Timers
2
Mounting Style
SMD/SMT
Height
0.95 mm
Interface Type
SPI, UART
Length
5 mm
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
5 mm
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATMEGA16U2-MU
Quantity:
250
8.3
8.3.1
8.3.2
7799D–AVR–11/10
Clock Sources
Default Clock Source
Clock Startup Sequence
The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.
Table 8-1.
Note:
The device is shipped with internal RC oscillator at 8.0 MHz and with the fuse CKDIV8 pro-
grammed, resulting in 1.0 MHz system clock. The startup time is set to maximum and time-out
period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures that
all users can make their desired clock source setting using any available programming interface.
Any clock source needs a sufficient V
cycles before it can be considered stable.
To ensure sufficient V
the device reset is released by all other reset sources.
describes the start conditions for the internal reset. The delay (t
Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The
selectable delays are shown in
dependent as shown in
Table 8-2.
Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
Vcc rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient Vcc before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.
Device Clocking Option
Low Power Crystal Oscillator
Full Swing Crystal Oscillator
Reserved
Reserved
Calibrated Internal RC Oscillator
External Clock
Reserved
Typ Time-out (V
1. For all fuses “1” means unprogrammed while “0” means programmed.
4.1 ms
65 ms
0 ms
Device Clocking Options Select
Number of Watchdog Oscillator Cycles
CC
= 5.0V)
CC
“Typical Characteristics” on page
, the device issues an internal reset with a time-out delay (t
Table
CC
Typ Time-out (V
8-2. The frequency of the Watchdog Oscillator is voltage
to start oscillating and a minimum number of oscillating
(1)
4.3 ms
69 ms
0 ms
ATmega8U2/16U2/32U2
CC
= 3.0V)
“On-chip Debug System” on page 45
273.
TOUT
) is timed from the Watchdog
Number of Cycles
8K (8,192)
0101 - 0100
1111 - 1000
0111 - 0110
CKSEL3:0
512
0011
0010
0000
0001
0
TOUT
) after
29

Related parts for ATMEGA16U2-MU