ATMEGA16U2-MU Atmel, ATMEGA16U2-MU Datasheet - Page 88

no-image

ATMEGA16U2-MU

Manufacturer Part Number
ATMEGA16U2-MU
Description
MCU AVR 16K FLASH USB 32-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16U2-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Core
AVR8
Processor Series
ATMEGA16x
Data Bus Width
8 bit
Maximum Clock Frequency
16 MHz
Data Ram Size
1.25 KB
Data Rom Size
512 B
Number Of Programmable I/os
22
Number Of Timers
2
Mounting Style
SMD/SMT
Height
0.95 mm
Interface Type
SPI, UART
Length
5 mm
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
5 mm
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATMEGA16U2-MU
Quantity:
250
14. Timer/Counter0 and Timer/Counter1 Prescalers
14.1
14.2
14.3
14.4
7799D–AVR–11/10
Overview
Internal Clock Source
Prescaler Reset
External Clock Source
Timer/Counter0 and 1 share the same prescaler module, but the Timer/Counters can have dif-
ferent prescaler settings. The description below applies to all Timer/Counters. Tn is used as a
general name, n = 0 or 1.
The Timer/Counter can be clocked directly by the system clock (by setting the CSn[2:0] = 1).
This provides the fastest operation, with a maximum Timer/Counter clock frequency equal to
system clock frequency (f
as a clock source. The prescaled clock has a frequency of either f
f
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by the Timer/Counter Tn. Since the prescaler is not affected by
the Timer/Counter’s clock select, the state of the prescaler will have implications for situations
where a prescaled clock is used. One example of prescaling artifacts occurs when the timer is
enabled and clocked by the prescaler (6 > CSn[2:0] > 1). The number of system clock cycles
from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock
cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).
It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.
An external clock source applied to the Tn pin can be used as Timer/Counter clock (clk
Tn pin is sampled once every system clock cycle by the pin synchronization logic. The synchro-
nized (sampled) signal is then passed through the edge detector.
equivalent block diagram of the Tn synchronization and edge detector logic. The registers are
clocked at the positive edge of the internal system clock (
high period of the internal system clock.
The edge detector generates one clk
= 6) edge it detects.
Figure 14-1. Tn/T0 Pin Sampling
CLK_I/O
/256, or f
Tn
clk
I/O
CLK_I/O
D
LE
/1024.
Q
CLK_I/O
Synchronization
D
). Alternatively, one of four taps from the prescaler can be used
Q
Tn
pulse for each positive (CSn2:0 = 7) or negative (CSn2:0
ATmega8U2/16U2/32U2
clk
D
I/O
). The latch is transparent in the
Q
Figure 14-1
Edge Detector
CLK_I/O
shows a functional
/8, f
Tn_sync
(To Clock
Select Logic)
CLK_I/O
Tn
). The
/64,
88

Related parts for ATMEGA16U2-MU