S9S12G64F0MLF Freescale Semiconductor, S9S12G64F0MLF Datasheet - Page 299

no-image

S9S12G64F0MLF

Manufacturer Part Number
S9S12G64F0MLF
Description
16-bit Microcontrollers - MCU S12 Core,64kFlash,Au
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of S9S12G64F0MLF

Rohs
yes
Core
S12
Processor Series
MC9S12G
Data Bus Width
16 bit
Maximum Clock Frequency
25 MHz
Program Memory Size
64 KB
Data Ram Size
2 KB
On-chip Adc
Yes
Operating Supply Voltage
3.13 V to 5.5 V
Operating Temperature Range
- 40 C to + 125 C
Package / Case
LQFP-48
Mounting Style
SMD/SMT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12G64F0MLF
Manufacturer:
IR
Quantity:
4 200
Part Number:
S9S12G64F0MLF
Manufacturer:
FREESCALE
Quantity:
2 500
Part Number:
S9S12G64F0MLF
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S12G64F0MLF
Manufacturer:
FREESCALE
Quantity:
2 500
Part Number:
S9S12G64F0MLF
Manufacturer:
FREESCALE
Quantity:
20 000
Company:
Part Number:
S9S12G64F0MLF
Quantity:
1 961
Part Number:
S9S12G64F0MLFR
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
7.4.6
The BDM communicates with external devices serially via the BKGD pin. During reset, this pin is a mode
select input which selects between normal and special modes of operation. After reset, this pin becomes
the dedicated serial interface pin for the BDM.
The BDM serial interface is timed based on the VCO clock (please refer to the CPMU Block Guide for
more details), which gets divided by 8. This clock will be referred to as the target clock in the following
explanation.
The BDM serial interface uses a clocking scheme in which the external host generates a falling edge on
the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether data is
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycles per
bit. The interface times out if 512 clock cycles occur between falling edges from the host.
The BKGD pin is a pseudo open-drain pin and has an weak on-chip active pull-up that is enabled at all
times. It is assumed that there is an external pull-up and that drivers connected to BKGD do not typically
drive the high level. Since R-C rise time could be unacceptably long, the target system and host provide
brief driven-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is the host
for transmit cases and the target for receive cases.
The timing for host-to-target is shown in
Figure
the host and target are operating from separate clocks, it can take the target system up to one full clock
cycle to recognize this edge. The target measures delays from this perceived start of the bit time while the
host measures delays from the point it actually drove BKGD low to start the bit up to one target clock cycle
Freescale Semiconductor
Hardware
Hardware
Firmware
Firmware
TRACE
7-9. All four cases begin when the host drives the BKGD pin low to generate a falling edge. Since
Read
Read
Write
Write
GO,
BDM Serial Interface
AT ~16 TC/Bit
Command
Command
Command
Command
Command
8 Bits
DELAY
48-BC
76-BC
Delay
MC9S12G Family Reference Manual, Rev.1.23
AT ~16 TC/Bit
Figure 7-6. BDM Command Structure
Address
Address
16 Bits
Data
Command
Next
Data
Figure 7-7
DELAY
36-BC
and that of target-to-host in
150-BC
Delay
Command
Command
Next
Next
Data
AT ~16 TC/Bit
16 Bits
Background Debug Module (S12SBDMV1)
Data
BC = Bus Clock Cycles
TC = Target Clock Cycles
150-BC
Delay
Figure 7-8
Command
Command
Next
Next
and
301

Related parts for S9S12G64F0MLF