PIC16F877A-I/PT Microchip Technology Inc., PIC16F877A-I/PT Datasheet - Page 28

no-image

PIC16F877A-I/PT

Manufacturer Part Number
PIC16F877A-I/PT
Description
44 PIN, 7 KB FLASH, 368 RAM, 33 I/O
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC16F877A-I/PT

A/d Inputs
8-Channel, 10-Bit
Comparators
2
Cpu Speed
5 MIPS
Eeprom Memory
256 Bytes
Input Output
33
Interface
I2C/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin TQFP
Programmable Memory
14K Bytes
Ram Size
368 Bytes
Speed
20 MHz
Timers
2-8-bit, 1-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F877A-I/PT
Manufacturer:
MICROCHIP
Quantity:
9 100
Part Number:
PIC16F877A-I/PT
Manufacturer:
AVAGO
Quantity:
84
Part Number:
PIC16F877A-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F877A-I/PT
Quantity:
1 639
Part Number:
PIC16F877A-I/PT
0
Company:
Part Number:
PIC16F877A-I/PT
Quantity:
3 000
PIC16F87X
2.3
The program counter (PC) is 13-bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The upper bits (PC<12:8>) are not
readable, but are indirectly writable through the
PCLATH register. On any RESET, the upper bits of the
PC will be cleared. Figure 2-5 shows the two situations
for the loading of the PC. The upper example in the fig-
ure shows how the PC is loaded on a write to PCL
(PCLATH<4:0>
ure shows how the PC is loaded during a CALL or GOTO
instruction (PCLATH<4:3>
FIGURE 2-5:
2.3.1
A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL). When doing a
table read using a computed GOTO method, care
should be exercised if the table location crosses a PCL
memory boundary (each 256 byte block). Refer to the
application note, “Implementing a Table Read"
(AN556).
2.3.2
The PIC16F87X family has an 8-level deep x 13-bit wide
hardware stack. The stack space is not part of either pro-
gram or data space and the stack pointer is not readable
or writable. The PC is PUSHed onto the stack when a
CALL instruction is executed, or an interrupt causes a
branch. The stack is POPed in the event of a
RETURN,RETLW or a RETFIE instruction execution.
PCLATH is not affected by a PUSH or POP operation.
The stack operates as a circular buffer. This means that
after the stack has been PUSHed eight times, the ninth
push overwrites the value that was stored from the first
push. The tenth push overwrites the second push (and
so on).
DS30292C-page 26
PC
PC
12
12 11 10
2
PCL and PCLATH
PCH
5
PCLATH<4:3>
PCH
COMPUTED GOTO
STACK
PCLATH
PCLATH<4:0>
8
PCLATH
8
PCH). The lower example in the fig-
7
7
LOADING OF PC IN
DIFFERENT SITUATIONS
PCL
PCL
PCH).
11
8
0
0
Instruction with
PCL as
Destination
ALU
GOTO,CALL
Opcode <10:0>
2.4
All PIC16F87X devices are capable of addressing a
continuous 8K word block of program memory. The
CALL and GOTO instructions provide only 11 bits of
address to allow branching within any 2K program
memory page. When doing a CALL or GOTO instruction,
the upper 2 bits of the address are provided by
PCLATH<4:3>. When doing a CALL or GOTO instruc-
tion, the user must ensure that the page select bits are
programmed so that the desired program memory
page is addressed. If a return from a CALL instruction
(or interrupt) is executed, the entire 13-bit PC is popped
off
PCLATH<4:3> bits is not required for the return instruc-
tions (which POPs the address from the stack).
Example 2-1 shows the calling of a subroutine in
page 1 of the program memory. This example assumes
that PCLATH is saved and restored by the Interrupt
Service Routine (if interrupts are used).
EXAMPLE 2-1:
SUB1_P1
Note:
Note 1: There are no status bits to indicate stack
the
Program Memory Paging
2: There are no instructions/mnemonics
stack.
The contents of the PCLATH register are
unchanged after a RETURN or RETFIE
instruction is executed. The user must
rewrite the contents of the PCLATH regis-
ter for any subsequent subroutine calls or
GOTO instructions.
ORG 0x500
BCF PCLATH,4
BSF PCLATH,3
CALL SUB1_P1
:
:
ORG 0x900
:
:
RETURN
overflow or stack underflow conditions.
called PUSH or POP. These are actions
that occur from the execution of the
CALL, RETURN, RETLW and RETFIE
instructions, or the vectoring to an inter-
rupt address.
Therefore,
CALL OF A SUBROUTINE
IN PAGE 1 FROM PAGE 0
2001 Microchip Technology Inc.
;Select page 1
;(800h-FFFh)
;Call subroutine in
;page 1 (800h-FFFh)
;page 1 (800h-FFFh)
;called subroutine
;page 1 (800h-FFFh)
;return to
;Call subroutine
;in page 0
;(000h-7FFh)
manipulation
of
the

Related parts for PIC16F877A-I/PT