PIC16F877A-I/PT Microchip Technology Inc., PIC16F877A-I/PT Datasheet - Page 84

no-image

PIC16F877A-I/PT

Manufacturer Part Number
PIC16F877A-I/PT
Description
44 PIN, 7 KB FLASH, 368 RAM, 33 I/O
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC16F877A-I/PT

A/d Inputs
8-Channel, 10-Bit
Comparators
2
Cpu Speed
5 MIPS
Eeprom Memory
256 Bytes
Input Output
33
Interface
I2C/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin TQFP
Programmable Memory
14K Bytes
Ram Size
368 Bytes
Speed
20 MHz
Timers
2-8-bit, 1-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F877A-I/PT
Manufacturer:
MICROCHIP
Quantity:
9 100
Part Number:
PIC16F877A-I/PT
Manufacturer:
AVAGO
Quantity:
84
Part Number:
PIC16F877A-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F877A-I/PT
Quantity:
1 639
Part Number:
PIC16F877A-I/PT
0
Company:
Part Number:
PIC16F877A-I/PT
Quantity:
3 000
PIC16F87X
9.2.11
Transmission of a data byte, a 7-bit address, or either
half of a 10-bit address, is accomplished by simply writ-
ing a value to SSPBUF register. This action will set the
Buffer Full flag (BF) and allow the baud rate generator
to begin counting and start the next transmission. Each
bit of address/data will be shifted out onto the SDA pin
after the falling edge of SCL is asserted (see data hold
time spec). SCL is held low for one baud rate generator
rollover count (T
is released high (see data setup time spec). When the
SCL pin is released high, it is held that way for T
The data on the SDA pin must remain stable for that
duration and some hold time after the next falling edge
of SCL. After the eighth bit is shifted out (the falling
edge of the eighth clock), the BF flag is cleared and the
master releases SDA allowing the slave device being
addressed to respond with an ACK bit during the ninth
bit time, if an address match occurs or if data was
received properly. The status of ACK is read into the
ACKDT on the falling edge of the ninth clock. If the
master receives an Acknowledge, the Acknowledge
Status bit (ACKSTAT) is cleared. If not, the bit is set.
After the ninth clock, the SSPIF is set and the master
clock (baud rate generator) is suspended until the next
data byte is loaded into the SSPBUF, leaving SCL low
and SDA unchanged (Figure 9-14).
After the write to the SSPBUF, each bit of address will
be shifted out on the falling edge of SCL, until all seven
address bits and the R/W bit are completed. On the fall-
ing edge of the eighth clock, the master will de-assert
the SDA pin, allowing the slave to respond with an
Acknowledge. On the falling edge of the ninth clock, the
master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT status bit (SSPCON2<6>).
Following the falling edge of the ninth clock transmis-
sion of the address, the SSPIF is set, the BF flag is
cleared, and the baud rate generator is turned off until
another write to the SSPBUF takes place, holding SCL
low and allowing SDA to float.
DS30292C-page 82
I
TRANSMISSION
2
C MASTER MODE
BRG
). Data should be valid before SCL
BRG
.
9.2.11.1
In Transmit mode, the BF bit (SSPSTAT<0>) is set
when the CPU writes to SSPBUF and is cleared when
all 8 bits are shifted out.
9.2.11.2
If the user writes the SSPBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), then WCOL is set and the contents of the
buffer are unchanged (the write doesn’t occur).
WCOL must be cleared in software.
9.2.11.3
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is
cleared when the slave has sent an Acknowledge
(ACK = 0), and is set when the slave does not Acknowl-
edge (ACK = 1). A slave sends an Acknowledge when
it has recognized its address (including a general call),
or when the slave has properly received its data.
BF Status Flag
WCOL Status Flag
ACKSTAT Status Flag
2001 Microchip Technology Inc.

Related parts for PIC16F877A-I/PT