PIC12C672-10/SM Microchip Technology, PIC12C672-10/SM Datasheet - Page 244

no-image

PIC12C672-10/SM

Manufacturer Part Number
PIC12C672-10/SM
Description
IC MCU OTP 2KX14 A/D 8-SOIJ
Manufacturer
Microchip Technology
Series
PIC® 12Cr
Datasheets

Specifications of PIC12C672-10/SM

Core Processor
PIC
Core Size
8-Bit
Speed
10MHz
Peripherals
POR, WDT
Number Of I /o
5
Program Memory Size
3.5KB (2K x 14)
Program Memory Type
OTP
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 4x8b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
8-SOIC (5.3mm Width), 8-SOP, 8-SOEIAJ
For Use With
XLT08SO-1 - SOCKET TRANSITION 8SOIC 150/208AC164312 - MODULE SKT FOR PM3 16SOICISPICR1 - ADAPTER IN-CIRCUIT PROGRAMMING309-1048 - ADAPTER 8-SOIC TO 8-DIP309-1047 - ADAPTER 8-SOIC TO 8-DIPAC124001 - MODULE SKT PROMATEII 8DIP/SOIC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Connectivity
-
Other names
PIC12C672-10/SMR
PIC12C672-10/SMR
PICmicro MID-RANGE MCU FAMILY
15.4.1.4
15.4.2
15.4.3
DS31015A-page 15-24
Clock Arbitration
Master Mode (Firmware)
Multi-Master Mode (Firmware)
Clock arbitration has the SCL pin to inhibit the master device from sending the next clock pulse.
The SSP module in I
to the SSP interrupt (SSPIF bit is set and the CKP bit is cleared). The data that needs to be trans-
mitted will need to be written to the SSPBUF register, and then the CKP bit will need to be set to
allow the master to generate the required clocks.
Master mode of operation is supported by interrupt generation on the detection of the START and
STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP
module is disabled. Control of the I
with both the S and P bits clear.
In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRIS
bit(s). The output level is always low, irrespective of the value(s) in the PORT register. So when
transmitting data, a '1' data bit must have it’s TRIS bit set (input) and a '0' data bit must have it’s
TRIS bit cleared (output). The same scenario is true for the SCL line with the TRIS bit.
The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):
• START condition
• STOP condition
• Data transfer byte transmitted/received
Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011)
or with the slave active (SSPM3:SSP0 = 1110 or 1111). When the slave modes are enabled, the
software needs to differentiate the source(s) of the interrupt.
In multi-Master mode, the interrupt generation on the detection of the START and STOP condi-
tions allows the determination of when the bus is free. The STOP (P) and START (S) bits are
cleared from a reset or when the SSP module is disabled. Control of the I
when the P bit (SSPSTAT<4>) is set, or the bus is idle with both the S and P bits clear. When the
bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition
occurs.
In Multi-Master operation, the SDA line must be monitored to see if the signal level is the
expected output level. This check only needs to be done when a high level is output. If a high level
is expected and a low level is present, the device needs to release the SDA and SCL lines (set
the TRIS bits). There are two stages where this arbitration can be lost, they are:
• Address transfer
• Data transfer
When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the
address transfer stage, communication to the device may be in progress. If addressed an ACK
pulse will be generated. If arbitration was lost during the data transfer stage, the device will need
to retransfer the data at a later time.
2
C slave mode will hold the SCL pin low when the CPU needs to respond
2
C bus may be taken when the P bit is set, or the bus is idle
1997 Microchip Technology Inc.
2
C bus may be taken

Related parts for PIC12C672-10/SM