DSPIC30F3013-30I/SO Microchip Technology, DSPIC30F3013-30I/SO Datasheet - Page 111

IC DSPIC MCU/DSP 24K 28SOIC

DSPIC30F3013-30I/SO

Manufacturer Part Number
DSPIC30F3013-30I/SO
Description
IC DSPIC MCU/DSP 24K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F3013-30I/SO

Program Memory Type
FLASH
Program Memory Size
24KB (8K x 24)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F301330ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
NSC
Quantity:
340
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
PIC
Quantity:
20 000
15.12.3
If both FAULT input pins have been assigned to control
a particular PWM I/O pin, the FAULT state programmed
for the FAULT A input pin will take priority over the
FAULT B input pin.
15.12.4
Each of the FAULT input pins has two modes of
operation:
• Latched Mode: When the FAULT pin is driven
• Cycle-by-Cycle Mode: When the FAULT input
The Operating mode for each FAULT input pin is
selected using the FLTAM and FLTBM control bits in
the FLTACON and FLTBCON Special Function
Registers.
Each of the FAULT pins can be controlled manually in
software.
15.13 PWM Update Lockout
For a complex PWM application, the user may need to
write up to four duty cycle registers and the time base
period register, PTPER, at a given time. In some appli-
cations, it is important that all buffer registers be written
before the new duty cycle and period values are loaded
for use by the module.
The PWM update lockout feature is enabled by setting
the UDIS control bit in the PWMCON2 SFR. The UDIS
bit affects all duty cycle buffer registers and the PWM
time base period buffer, PTPER. No duty cycle
changes or period value changes will have effect while
UDIS = 1.
 2004 Microchip Technology Inc.
low, the PWM outputs will go to the states defined
in the FLTACON/FLTBCON register. The PWM
outputs will remain in this state until the FAULT
pin is driven high and the corresponding interrupt
flag has been cleared in software. When both of
these actions have occurred, the PWM outputs
will return to normal operation at the beginning of
the next PWM cycle or half-cycle boundary. If the
interrupt flag is cleared before the FAULT condi-
tion ends, the PWM module will wait until the
FAULT pin is no longer asserted, to restore the
outputs.
pin is driven low, the PWM outputs remain in the
defined FAULT states for as long as the FAULT
pin is held low. After the FAULT pin is driven high,
the PWM outputs return to normal operation at the
beginning of the following PWM cycle or
half-cycle boundary.
FAULT PIN PRIORITY
FAULT INPUT MODES
Preliminary
15.14 PWM Special Event Trigger
The PWM module has a special event trigger that
allows A/D conversions to be synchronized to the PWM
time base. The A/D sampling and conversion time may
be programmed to occur at any point within the PWM
period. The special event trigger allows the user to min-
imize the delay between the time when A/D conversion
results are acquired and the time when the duty cycle
value is updated.
The PWM special event trigger has an SFR named
SEVTCMP, and five control bits to control its operation.
The PTMR value for which a special event trigger
should occur is loaded into the SEVTCMP register.
When the PWM time base is in an Up/Down Counting
mode, an additional control bit is required to specify the
counting phase for the special event trigger. The count
phase is selected using the SEVTDIR control bit in the
SEVTCMP SFR. If the SEVTDIR bit is cleared, the spe-
cial event trigger will occur on the upward counting
cycle of the PWM time base. If the SEVTDIR bit is set,
the special event trigger will occur on the downward
count cycle of the PWM time base. The SEVTDIR
control bit has no effect unless the PWM time base is
configured for an Up/Down Counting mode.
15.14.1
The PWM special event trigger has a postscaler that
allows a 1:1 to 1:16 postscale ratio. The postscaler is
configured by writing the SEVOPS<3:0> control bits in
the PWMCON2 SFR.
The special event output postscaler is cleared on the
following events:
• Any write to the SEVTCMP register
• Any device Reset
15.15 PWM Operation During CPU Sleep
The FAULT A and FAULT B input pins have the ability
to wake the CPU from Sleep mode. The PWM module
generates an interrupt if either of the FAULT pins is
driven low while in Sleep.
15.16 PWM Operation During CPU Idle
The PTCON SFR contains a PTSIDL control bit. This
bit determines if the PWM module will continue to
operate or stop when the device enters Idle mode. If
PTSIDL = 0, the module will continue to operate. If
PTSIDL = 1, the module will stop operation as long as
the CPU remains in Idle mode.
Mode
Mode
SPECIAL EVENT TRIGGER
POSTSCALER
dsPIC30F
DS70082G-page 109

Related parts for DSPIC30F3013-30I/SO