DSPIC30F3013-30I/SO Microchip Technology, DSPIC30F3013-30I/SO Datasheet - Page 28

IC DSPIC MCU/DSP 24K 28SOIC

DSPIC30F3013-30I/SO

Manufacturer Part Number
DSPIC30F3013-30I/SO
Description
IC DSPIC MCU/DSP 24K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F3013-30I/SO

Program Memory Type
FLASH
Program Memory Size
24KB (8K x 24)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F301330ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
NSC
Quantity:
340
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
PIC
Quantity:
20 000
dsPIC30F
2.5
Concurrent operation of the DSP engine with MCU
instruction flow is not possible, though both the MCU
ALU and DSP engine resources may be used concur-
rently by the same instruction (e.g., ED and EDAC
instructions).
The DSP engine consists of a high speed 17-bit x
17-bit multiplier, a barrel shifter, and a 40-bit adder/
Subtractor (with two target accumulators, round and
saturation logic).
Data input to the DSP engine is derived from one of the
following:
1.
2.
3.
Data output from the DSP engine is written to one of the
following:
1.
2.
3.
DS70082G-page 26
Directly from the W array (registers W4, W5, W6
or W7) via the X and Y data buses for the MAC
class of instructions (MAC, MSC, MPY, MPY.N,
ED, EDAC, CLR and MOVSAC).
From the X bus for all other DSP instructions.
From the X bus for all MCU instructions which
use the barrel shifter.
The target accumulator, as defined by the DSP
instruction being executed.
The X bus for MAC, MSC, CLR and MOVSAC
accumulator writes, where the EA is derived
from W13 only. (MPY, MPY.N, ED and EDAC do
not offer an accumulator write option.)
The X bus for all MCU instructions which use the
barrel shifter.
DSP Engine
Preliminary
The DSP engine also has the capability to perform inher-
ent
require no additional data. These instructions are ADD,
SUB and NEG.
The DSP engine has various options selected through
various bits in the CPU Core Configuration Register
(CORCON), as listed below:
1.
2.
3.
4.
5.
6.
7.
A block diagram of the DSP engine is shown in
Figure 2-9.
Note:
Fractional or integer DSP multiply (IF).
Signed or unsigned DSP multiply (US).
Conventional or convergent rounding (RND).
Automatic saturation on/off for AccA (SATA).
Automatic saturation on/off for AccB (SATB).
Automatic saturation on/off for writes to data
memory (SATDW).
Accumulator
(ACCSAT).
accumulator-to-accumulator
For CORCON layout, see Table 4-3.
Saturation
 2004 Microchip Technology Inc.
mode
operations,
selection
which

Related parts for DSPIC30F3013-30I/SO