DSPIC30F3013-30I/SO Microchip Technology, DSPIC30F3013-30I/SO Datasheet - Page 53

IC DSPIC MCU/DSP 24K 28SOIC

DSPIC30F3013-30I/SO

Manufacturer Part Number
DSPIC30F3013-30I/SO
Description
IC DSPIC MCU/DSP 24K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F3013-30I/SO

Program Memory Type
FLASH
Program Memory Size
24KB (8K x 24)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F301330ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
NSC
Quantity:
340
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
PIC
Quantity:
20 000
5.0
The dsPIC30F Motor Control and Power Conversion
Family has up to 44 interrupt sources and 4 processor
exceptions (traps), which must be arbitrated based on
a priority scheme.
The CPU is responsible for reading the Interrupt Vec-
tor Table (IVT) and transferring the address contained
in the interrupt vector to the program counter. The
interrupt vector is transferred from the program data
bus into the program counter, via a 24-bit wide
multiplexer on the input of the program counter.
The Interrupt Vector Table (IVT) and Alternate Inter-
rupt Vector Table (AIVT) are placed near the beginning
of program memory (0x000004). The IVT and AIVT
are shown in Figure 5-2.
The interrupt controller is responsible for pre-
processing the interrupts and processor exceptions,
prior to their being presented to the processor core.
The peripheral interrupts and traps are enabled, priori-
tized and controlled using centralized special function
registers:
• IFS0<15:0>, IFS1<15:0>, IFS2<15:0>
• IEC0<15:0>, IEC1<15:0>, IEC2<15:0>
• IPC0<15:0>... IPC11<7:0>
• IPL<3:0> The current CPU priority level is explic-
• INTCON1<15:0>, INTCON2<15:0>
 2004 Microchip Technology Inc.
Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsPIC30F
Programmer’s Reference Manual (DS70030).
All interrupt request flags are maintained in these
three registers. The flags are set by their respec-
tive peripherals or external signals, and they are
cleared via software.
All interrupt enable control bits are maintained in
these three registers. These control bits are used
to individually enable interrupts from the
peripherals or external signals.
The user assignable priority level associated with
each of these 44 interrupts is held centrally in
these twelve registers.
itly stored in the IPL bits. IPL<3> is present in the
CORCON register, whereas IPL<2:0> are present
in the status register (SR) in the processor core.
Global interrupt control functions are derived from
these two registers. INTCON1 contains the con-
trol and status flags for the processor exceptions.
The INTCON2 register controls the external inter-
rupt request signal behavior and the use of the
alternate vector table.
INTERRUPTS
Preliminary
All interrupt sources can be user assigned to one of 7
priority levels, 1 through 7, via the IPCx registers.
Each interrupt source is associated with an interrupt
vector, as shown in Figure 5-2. Levels 7 and 1 repre-
sent the highest and lowest maskable priorities,
respectively.
If the NSTDIS bit (INTCON1<15>) is set, nesting of
interrupts is prevented. Thus, if an interrupt is currently
being serviced, processing of a new interrupt is pre-
vented, even if the new interrupt is of higher priority
than the one currently being serviced.
Certain interrupts have specialized control bits for fea-
tures like edge or level triggered interrupts, interrupt-
on-change, etc. Control of these features remains
within the peripheral module which generates the
interrupt.
The DISI instruction can be used to disable the
processing of interrupts of priorities 6 and lower for a
certain number of instructions, during which the DISI bit
(INTCON2<14>) remains set.
When an interrupt is serviced, the PC is loaded with the
address stored in the vector location in Program Mem-
ory that corresponds to the interrupt. There are 63 dif-
ferent vectors within the IVT (refer to Figure 5-2). These
vectors are contained in locations 0x000004 through
0x0000FE of program memory (refer to Figure 5-2).
These locations contain 24-bit addresses, and in order
to preserve robustness, an address error trap will take
place should the PC attempt to fetch any of these
words during normal execution. This prevents execu-
tion of random data as a result of accidentally decre-
menting a PC into vector space, accidentally mapping
a data space address into vector space, or the PC roll-
ing over to 0x000000 after reaching the end of imple-
mented program memory space. Execution of a GOTO
instruction to this vector space will also generate an
address error trap.
Note:
Note:
Note:
Interrupt flag bits get set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit. User soft-
ware should ensure the appropriate inter-
rupt flag bits are clear prior to enabling an
interrupt.
Assigning a priority level of ‘0’ to an inter-
rupt source is equivalent to disabling that
interrupt.
The IPL bits become read-only whenever
the NSTDIS bit has been set to ‘1’.
dsPIC30F
DS70082G-page 51

Related parts for DSPIC30F3013-30I/SO