DSPIC30F3013-30I/SO Microchip Technology, DSPIC30F3013-30I/SO Datasheet - Page 133

IC DSPIC MCU/DSP 24K 28SOIC

DSPIC30F3013-30I/SO

Manufacturer Part Number
DSPIC30F3013-30I/SO
Description
IC DSPIC MCU/DSP 24K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F3013-30I/SO

Program Memory Type
FLASH
Program Memory Size
24KB (8K x 24)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F301330ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
NSC
Quantity:
340
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
PIC
Quantity:
20 000
19.0
19.1
The Controller Area Network (CAN) module is a serial
interface, useful for communicating with other CAN
modules or microcontroller devices. This interface/
protocol was designed to allow communications within
noisy environments.
The CAN module is a communication controller imple-
menting the CAN 2.0 A/B protocol, as defined in the
BOSCH specification. The module will support
CAN 1.2, CAN 2.0A, CAN2.0B Passive and CAN 2.0B
Active versions of the protocol. The module implemen-
tation is a full CAN system. The CAN specification is
not covered within this data sheet. The reader may
refer to the BOSCH CAN specification for further
details.
The module features are as follows:
• Implementation of the CAN protocol CAN 1.2,
• Standard and extended data frames
• 0-8 bytes data length
• Programmable bit rate up to 1 Mbit/sec
• Support for remote frames
• Double buffered receiver with two prioritized
• 6 full (standard/extended identifier) acceptance
• 2 full acceptance filter masks, one each associ-
• Three transmit buffers with application specified
• Programmable wake-up functionality with
• Programmable Loopback mode supports self-test
• Signaling via interrupt capabilities for all CAN
• Programmable clock source
• Programmable link to Input Capture #2 (IC2)
• Low power Sleep and Idle mode
 2004 Microchip Technology Inc.
Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046).
CAN 2.0A and CAN 2.0B
received message storage buffers (each buffer
may contain up to 8 bytes of data)
filters, 2 associated with the high priority receive
buffer, and 4 associated with the low priority
receive buffer
ated with the high and low priority receive buffers
prioritization and abort capability (each buffer may
contain up to 8 bytes of data)
integrated low pass filter
operation
receiver and transmitter error states
module for time-stamping and network
synchronization
CAN MODULE
Overview
Preliminary
The CAN bus module consists of a protocol engine,
and message buffering/control. The CAN protocol
engine handles all functions for receiving and transmit-
ting messages on the CAN bus. Messages are trans-
mitted by first loading the appropriate data registers.
Status and errors can be checked by reading the
appropriate registers. Any message detected on the
CAN bus is checked for errors and then matched
against filters to see if it should be received and stored
in one of the receive registers.
19.2
The CAN module transmits various types of frames,
which include data messages or remote transmission
Requests initiated by the user as other frames that are
automatically generated for control purposes. The
following frame types are supported:
• Standard Data Frame
A Standard Data Frame is generated by a node when
the node wishes to transmit data. It includes a 11-bit
Standard Identifier (SID) but not an 18-bit Extended
Identifier (EID).
• Extended Data Frame
An Extended Data Frame is similar to a Standard Data
Frame, but includes an Extended Identifier as well.
• Remote Frame
It is possible for a destination node to request the data
from the source. For this purpose, the destination node
sends a Remote Frame with an identifier that matches
the identifier of the required Data Frame. The appropri-
ate data source node will then send a Data Frame as a
response to this Remote request.
• Error Frame
An Error Frame is generated by any node that detects
a bus error. An error frame consists of 2 fields: an Error
Flag field and an Error Delimiter field.
• Overload Frame
An Overload Frame can be generated by a node as a
result of 2 conditions. First, the node detects a domi-
nant bit during lnterframe Space which is an illegal con-
dition. Second, due to internal conditions, the node is
not yet able to start reception of the next message. A
node may generate a maximum of 2 sequential
Overload Frames to delay the start of the next
message.
• Interframe Space
Interframe Space separates a proceeding frame (of
whatever type) from a following Data or Remote
Frame.
Frame Types
dsPIC30F
DS70082G-page 131

Related parts for DSPIC30F3013-30I/SO