C8051F130-GQR Silicon Laboratories Inc, C8051F130-GQR Datasheet - Page 154

no-image

C8051F130-GQR

Manufacturer Part Number
C8051F130-GQR
Description
IC 8051 MCU 128K FLASH 100TQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F13xr
Datasheets

Specifications of C8051F130-GQR

Core Processor
8051
Core Size
8-Bit
Speed
100MHz
Connectivity
EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
64
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8.25K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
Processor Series
C8051F1x
Core
8051
Data Bus Width
8 bit
Data Ram Size
8.25 KB
Interface Type
I2C, SMBus, SPI, UART
Maximum Clock Frequency
100 MHz
Number Of Programmable I/os
64
Number Of Timers
5
Operating Supply Voltage
2.7 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F120DK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F130-GQR
Manufacturer:
TI
Quantity:
679
Part Number:
C8051F130-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
C8051F120/1/2/3/4/5/6/7
C8051F130/1/2/3
11.3. Interrupt Handler
The CIP-51 includes an extended interrupt system supporting a total of 20 interrupt sources with two prior-
ity levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies
according to the specific version of the device. Each interrupt source has one or more associated interrupt-
pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition,
the associated interrupt-pending flag is set to logic 1.
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the
EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0
disables all interrupt sources regardless of the individual interrupt-enable settings.
Note: Any instruction that clears the EA bit should be immediately followed by an instruction that has two
or more opcode bytes. For example:
// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.
; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears
the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How-
ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is
followed by a multi-cycle instruction, the interrupt will not be taken.
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.
11.3.1. MCU Interrupt Sources and Vectors
The MCUs support 20 interrupt sources. Software can simulate an interrupt event by setting any interrupt-
pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the
CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources,
associated vector addresses, priority order and control bits are summarized in Table 11.4. Refer to the
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt
conditions for the peripheral and the behavior of its interrupt-pending flag(s).
154
Rev. 1.4

Related parts for C8051F130-GQR