C8051F130-GQR Silicon Laboratories Inc, C8051F130-GQR Datasheet - Page 224

no-image

C8051F130-GQR

Manufacturer Part Number
C8051F130-GQR
Description
IC 8051 MCU 128K FLASH 100TQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F13xr
Datasheets

Specifications of C8051F130-GQR

Core Processor
8051
Core Size
8-Bit
Speed
100MHz
Connectivity
EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
64
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8.25K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
Processor Series
C8051F1x
Core
8051
Data Bus Width
8 bit
Data Ram Size
8.25 KB
Interface Type
I2C, SMBus, SPI, UART
Maximum Clock Frequency
100 MHz
Number Of Programmable I/os
64
Number Of Timers
5
Operating Supply Voltage
2.7 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F120DK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F130-GQR
Manufacturer:
TI
Quantity:
679
Part Number:
C8051F130-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
C8051F120/1/2/3/4/5/6/7
C8051F130/1/2/3
17.5. Memory Mode Selection
The external data memory space can be configured in one of four modes, shown in Figure 17.3, based on
the EMIF Mode bits in the EMI0CF register (SFR Definition 17.2). These modes are summarized below.
More information about the different modes can be found in
External Memory Timing Control” on page 226
17.5.1. Internal XRAM Only
When EMI0CF.[3:2] are set to ‘00’, all MOVX instructions will target the internal XRAM space on the
device. Memory accesses to addresses beyond the populated space will wrap on 8 k boundaries. As an
example, the addresses 0x2000 and 0x4000 both evaluate to address 0x0000 in on-chip XRAM space.
17.5.2. Split Mode without Bank Select
When EMI0CF.[3:2] are set to ‘01’, the XRAM memory map is split into two areas, on-chip space and off-
chip space.
224
EMI0CF[3:2] = 00
On-Chip XRAM
On-Chip XRAM
On-Chip XRAM
On-Chip XRAM
On-Chip XRAM
On-Chip XRAM
8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address
and R0 or R1 to determine the low-byte of the effective address.
16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.
Effective addresses below the 8 k boundary will access on-chip XRAM space.
Effective addresses above the 8 k boundary will access off-chip space.
8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-
chip or off-chip. However, in the “No Bank Select” mode, an 8-bit MOVX operation will not drive the
upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate
the upper address bits at will by setting the Port state directly via the port latches. This behavior is in
contrast with “Split Mode with Bank Select” described below. The lower 8-bits of the Address Bus
A[7:0] are driven, determined by R0 or R1.
16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-
chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are
driven during the off-chip transaction.
0xFFFF
0x0000
EMI0CF[3:2] = 01
(No Bank Select)
On-Chip XRAM
Figure 17.3. EMIF Operating Modes
Off-Chip
Memory
0xFFFF
0x0000
Rev. 1.4
.
EMI0CF[3:2] = 10
On-Chip XRAM
(Bank Select)
Off-Chip
Memory
Section “SFR Definition 17.3. EMI0TC:
0xFFFF
0x0000
EMI0CF[3:2] = 11
Off-Chip
Memory
0xFFFF
0x0000

Related parts for C8051F130-GQR