CY7C1412KV18-333BZXI Cypress Semiconductor, CY7C1412KV18-333BZXI Datasheet - Page 13

no-image

CY7C1412KV18-333BZXI

Manufacturer Part Number
CY7C1412KV18-333BZXI
Description
SRAM 36MB (2Mx18) 1.8v 333MHz QDR II SRAM
Manufacturer
Cypress Semiconductor
Datasheet

Specifications of CY7C1412KV18-333BZXI

Rohs
yes
Memory Size
36 MB
Organization
2 M x 18
Access Time
30 ns
Supply Voltage - Max
1.9 V
Supply Voltage - Min
1.7 V
Maximum Operating Current
750 mA
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Package / Case
FBGA-165
Factory Pack Quantity
136

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY7C1412KV18-333BZXI
Manufacturer:
Cypress Semiconductor Corp
Quantity:
10 000
IEEE 1149.1 Serial Boundary Scan (JTAG)
These SRAMs incorporate a serial boundary scan test access
port (TAP) in the FBGA package. This part is fully compliant with
IEEE Standard #1149.1-2001. The TAP operates using JEDEC
standard 1.8 V I/O logic levels.
Disabling the JTAG Feature
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(V
internally pulled up and may be unconnected. They may
alternatively be connected to V
must be left unconnected. Upon power-up, the device comes up
in a reset state, which does not interfere with the operation of the
device.
Test Access Port
Test Clock
The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.
Test Mode Select (TMS)
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. This pin may be left
unconnected if the TAP is not used. The pin is pulled up
internally, resulting in a logic HIGH level.
Test Data-In (TDI)
The TDI pin is used to serially input information into the registers
and can be connected to the input of any of the registers. The
register between TDI and TDO is chosen by the instruction that
is loaded into the TAP instruction register. For information about
loading the instruction register, see the
Diagram on page
unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register.
Test Data-Out (TDO)
The TDO output pin is used to serially clock data out from the
registers. The output is active, depending upon the current state
of the TAP state machine (see
The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.
Performing a TAP Reset
A Reset is performed by forcing TMS HIGH (V
edges of TCK. This Reset does not affect the operation of the
SRAM and is performed when the SRAM is operating. At power
up, the TAP is reset internally to ensure that TDO comes up in a
high Z state.
TAP Registers
Registers are connected between the TDI and TDO pins to scan
the data in and out of the SRAM test circuitry. Only one register
can be selected at a time through the instruction registers. Data
is serially loaded into the TDI pin on the rising edge of TCK. Data
is output on the TDO pin on the falling edge of TCK.
Document Number: 001-57825 Rev. *F
SS
) to prevent clocking of the device. TDI and TMS are
15. TDI is internally pulled up and can be
DD
Instruction Codes on page
through a pull-up resistor. TDO
TAP Controller State
DD
) for five rising
19).
Instruction Register
Three-bit instructions are serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO pins, as shown in
page
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state, as described
in the previous section.
When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary “01” pattern to enable
fault isolation of the board level serial test path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This enables shifting of data through the SRAM
with minimal delay. The bypass register is set LOW (V
the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all of the input and
output pins on the SRAM. Several No Connect (NC) pins are also
included in the scan register to reserve pins for higher density
devices.
The boundary scan register is loaded with the contents of the
RAM input and output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and TDO
pins when the controller is moved to the Shift-DR state. The
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions are
used to capture the contents of the input and output ring.
The
the bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected to
TDI, and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in
page
TAP Instruction Set
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in
Codes on page
RESERVED and must not be used. The other five instructions
are described in this section in detail.
Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO pins. To execute
the instruction after it is shifted in, the TAP controller must be
moved into the Update-IR state.
Boundary Scan Order on page 20
19.
16. Upon power-up, the instruction register is loaded with
CY7C1412KV18, CY7C1414KV18
19. Three of these instructions are listed as
Identification Register Definitions on
TAP Controller Block Diagram on
CY7C1425KV18
shows the order in which
Page 13 of 33
Instruction
SS
) when

Related parts for CY7C1412KV18-333BZXI