MC9S12XDP512CAL Freescale, MC9S12XDP512CAL Datasheet - Page 460

MC9S12XDP512CAL

Manufacturer Part Number
MC9S12XDP512CAL
Description
Manufacturer
Freescale
Datasheet

Specifications of MC9S12XDP512CAL

Cpu Family
HCS12
Device Core Size
16b
Frequency (max)
40MHz
Interface Type
CAN/I2C/SCI/SPI
Total Internal Ram Size
32KB
# I/os (max)
91
Number Of Timers - General Purpose
12
Operating Supply Voltage (typ)
2.5/5V
Operating Supply Voltage (max)
2.75/5.5V
Operating Supply Voltage (min)
2.35/3.15V
On-chip Adc
2(16-chx10-bit)
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
112
Package Type
LQFP
Program Memory Type
Flash
Program Memory Size
512KB
Lead Free Status / RoHS Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12XDP512CAL
Manufacturer:
FREESCALE
Quantity:
1 928
Part Number:
MC9S12XDP512CAL
Manufacturer:
FREESCALE
Quantity:
4
Part Number:
MC9S12XDP512CAL
Manufacturer:
FREESCA
Quantity:
2 246
Part Number:
MC9S12XDP512CAL
Manufacturer:
FREESCALE
Quantity:
4 576
Part Number:
MC9S12XDP512CAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12XDP512CAL
Manufacturer:
FREESCALE
Quantity:
4 576
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
field of the CAN frame, is received into the next available RxBG. If the MSCAN receives an invalid
message in its RxBG (wrong identifier, transmission errors, etc.) the actual contents of the buffer will be
over-written by the next message. The buffer will then not be shifted into the FIFO.
When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the
background receive buffer, RxBG, but does not shift it into the receiver FIFO, generate a receive interrupt,
or acknowledge its own messages on the CAN bus. The exception to this rule is in loopback mode (see
Section 10.3.2.2, “MSCAN Control Register 1
exactly like all other incoming messages. The MSCAN receives its own transmitted messages in the event
that it loses arbitration. If arbitration is lost, the MSCAN must be prepared to become a receiver.
An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly
received messages with accepted identifiers and another message is correctly received from the CAN bus
with an accepted identifier. The latter message is discarded and an error interrupt with overrun indication
is generated if enabled (see
messages while the receiver FIFO being filled, but all incoming messages are discarded. As soon as a
receive buffer in the FIFO is available again, new valid messages will be accepted.
10.4.3
The MSCAN identifier acceptance registers (see
Control Register
(ID[10:0] or ID[28:0]). Any of these bits can be marked ‘don’t care’ in the MSCAN identifier mask
registers (see
A filter hit is indicated to the application software by a set receive buffer full flag (RXF = 1) and three bits
in the CANIDAC register (see
(CANIDAC)”). These identifier hit flags (IDHIT[2:0]) clearly identify the filter section that caused the
acceptance. They simplify the application software’s task to identify the cause of the receiver interrupt. If
more than one hit occurs (two or more filters match), the lower hit has priority.
A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU
interrupt loading. The filter is programmable to operate in four different modes (see Bosch CAN 2.0A/B
protocol specification):
460
1.Although this mode can be used for standard identifiers, it is recommended to use the four or eight identifier acceptance
filters for standard identifiers
Two identifier acceptance filters, each to be applied to:
— The full 29 bits of the extended identifier and to the following bits of the CAN 2.0B frame:
— The 11 bits of the standard identifier plus the RTR and IDE bits of the CAN 2.0A/B messages
– Remote transmission request (RTR)
– Identifier extension (IDE)
– Substitute remote request (SRR)
This mode implements two filters for a full length CAN 2.0B compliant extended identifier.
Figure 10-40
CANIDMR0–CANIDMR3) produces a filter 0 hit. Similarly, the second filter bank
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces a filter 1 hit.
Identifier Acceptance Filter
Section 10.3.2.18, “MSCAN Identifier Mask Registers
(CANIDAC)”) define the acceptable patterns of the standard or extended identifier
shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3,
Section 10.4.7.5, “Error
Section 10.3.2.12, “MSCAN Identifier Acceptance Control Register
MC9S12XDP512 Data Sheet, Rev. 2.21
(CANCTL1)”) where the MSCAN treats its own messages
Section 10.3.2.12, “MSCAN Identifier Acceptance
Interrupt”). The MSCAN remains able to transmit
(CANIDMR0–CANIDMR7)”).
Freescale Semiconductor
1
.

Related parts for MC9S12XDP512CAL