ATMEga64L ATMEL Corporation, ATMEga64L Datasheet - Page 120

no-image

ATMEga64L

Manufacturer Part Number
ATMEga64L
Description
8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
Manufacturer
ATMEL Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEga64L-16AU
Manufacturer:
ROHM
Quantity:
40 000
Part Number:
ATMEga64L-8AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
ALTERA
0
Part Number:
ATMEga64L-8AI
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
4 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
451
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MU
Quantity:
113
Part Number:
ATMEga64L-8MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L8AJ
Manufacturer:
ATMEL
Quantity:
6 973
Force Output Compare
Compare Match Blocking by
TCNTn Write
Using the Output Compare
Unit
Compare Match Output
Unit
120
ATmega64(L)
buffering is disabled the CPU will access the OCRnx directly. The content of the OCR1x
(Buffer or Compare) Register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNTn – and ICRn Register). There-
fore OCRnx is not read via the high byte temporary register (TEMP). However, it is a
good practice to read the low byte first as when accessing other 16-bit registers. Writing
the OCRnx registers must be done via the TEMP Register since the compare of all 16
bits is done continuously. The high byte (OCRnxH) has to be written first. When the high
byte I/O location is written by the CPU, the TEMP Register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte
will be copied into the upper eight bits of either the OCRnx Buffer or OCRnx Compare
Register in the same system clock cycle.
For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 113.
In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCnx) bit. Forcing Compare
Match will not set the OCFnx flag or reload/clear the timer, but the OCnx pin will be
updated as if a real Compare Match had occurred (the COMn1:0 bits settings define
whether the OCnx pin is set, cleared or toggled).
All CPU writes to the TCNTn Register will block any Compare Match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCRnx to be
initialized to the same value as TCNTn without triggering an interrupt when the
Timer/Counter clock is enabled.
Since writing TCNTn in any mode of operation will block all Compare Matches for one
timer clock cycle, there are risks involved when changing TCNTn when using any of the
Output Compare channels, independent of whether the Timer/Counter is running or not.
If the value written to TCNTn equals the OCRnx value, the Compare Match will be
missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to
TOP in PWM modes with variable TOP values. The Compare Match for the TOP will be
ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.
The setup of the OCnx should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCnx value is to use the Force
Output Compare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its
value even when changing between waveform generation modes.
Be aware that the COMnx1:0 bits are not double buffered together with the compare
value. Changing the COMnx1:0 bits will take effect immediately.
The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Gener-
ator uses the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next
Compare Match. Secondly the COMnx1:0 bits control the OCnx pin output source. Fig-
ure 50 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting.
The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of
the general I/O port control registers (DDR and PORT) that are affected by the
COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the
internal OCnx Register, not the OCnx pin. If a System Reset occur, the OCnx Register is
reset to “0”.
2490G–AVR–03/04

Related parts for ATMEga64L