ATMEga64L ATMEL Corporation, ATMEga64L Datasheet - Page 199

no-image

ATMEga64L

Manufacturer Part Number
ATMEga64L
Description
8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
Manufacturer
ATMEL Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEga64L-16AU
Manufacturer:
ROHM
Quantity:
40 000
Part Number:
ATMEga64L-8AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
ALTERA
0
Part Number:
ATMEga64L-8AI
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
4 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
451
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MU
Quantity:
113
Part Number:
ATMEga64L-8MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L8AJ
Manufacturer:
ATMEL
Quantity:
6 973
Data Packet Format
Combining Address and Data
Packets Into a Transmission
2490G–AVR–03/04
All data packets transmitted on the TWI bus are nine bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the Master generates the clock and
the START and STOP conditions, while the Receiver is responsible for acknowledging
the reception. An Acknowledge (ACK) is signalled by the Receiver pulling the SDA line
low during the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is sig-
nalled. When the Receiver has received the last byte, or for some reason cannot receive
any more bytes, it should inform the Transmitter by sending a NACK after the final byte.
The MSB of the data byte is transmitted first.
Figure 90. Data Packet Format
A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the wired-ANDing of the SCL line can be used to
implement handshaking between the Master and the Slave. The Slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between
the data transmissions. The Slave extending the SCL low period will not affect the SCL
high period, which is determined by the Master. As a consequence, the Slave can
reduce the TWI data transfer speed by prolonging the SCL duty cycle.
Figure 91 shows a typical data transmission. Note that several data bytes can be trans-
mitted between the SLA+R/W and the STOP condition, depending on the software
protocol implemented by the application software.
Figure 91. Typical Data Transmission
Aggregate
Transmitter
SDA
SDA from
SDA from
SCL
SCL from
Receiver
Master
SDA
SLA+R/W
START
Addr MSB
1
2
Data MSB
SLA+R/W
1
Addr LSB
7
2
R/W
8
ACK
9
Data Byte
7
Data MSB
Data LSB
1
8
2
Data Byte
ACK
9
ATmega64(L)
7
Data LSB
8
STOP, REPEATED
ACK
9
START, or Next
Data Byte
STOP
199

Related parts for ATMEga64L