ATMEga64L ATMEL Corporation, ATMEga64L Datasheet - Page 24

no-image

ATMEga64L

Manufacturer Part Number
ATMEga64L
Description
8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
Manufacturer
ATMEL Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEga64L-16AU
Manufacturer:
ROHM
Quantity:
40 000
Part Number:
ATMEga64L-8AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
ALTERA
0
Part Number:
ATMEga64L-8AI
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
4 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
451
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MU
Quantity:
113
Part Number:
ATMEga64L-8MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L8AJ
Manufacturer:
ATMEL
Quantity:
6 973
Preventing EEPROM
Corruption
I/O Memory
24
ATmega64(L)
During periods of low V
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.
E E P R O M d a t a c o r r u p t i o n c a n e a s i l y b e a v o i d e d b y f o l l o w i n g t h i s d e s i g n
recommendation:
The I/O space definition of the ATmega64 is shown in “Register Summary” on page 342.
All ATmega64 I/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between
the 32 general purpose working registers and the I/O space. I/O Registers within the
address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instruc-
tions. In these registers, the value of single bits can be checked by using the SBIS and
SBIC instructions. Refer to the instruction set section for more details. When using the
I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing I/O Registers as data space using LD and ST instructions, 0x20 must
be added to these addresses. The ATmega64 is a complex microcontroller with more
peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only
the ST/STS/STD and LD/LDS/LDD instructions can be used. The Extended I/O space is
replaced with SRAM locations when the ATmega64 is in the ATmega103 compatibility
mode.
For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.
Some of the status flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.
Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V
operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.
CC
Reset Protection circuit can be used. If a reset occurs while a write
CC,
the EEPROM data can be corrupted because the supply volt-
2490G–AVR–03/04

Related parts for ATMEga64L