MC9S08GT60CFD Freescale Semiconductor, MC9S08GT60CFD Datasheet - Page 156

no-image

MC9S08GT60CFD

Manufacturer Part Number
MC9S08GT60CFD
Description
MCU 8BIT 60K FLASH 48-QFN
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08GT60CFD

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
39
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-QFN Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08GT60CFDE
Manufacturer:
ON
Quantity:
130
Part Number:
MC9S08GT60CFDE
Manufacturer:
FREESCALE
Quantity:
1 831
Part Number:
MC9S08GT60CFDE
Manufacturer:
FREESCALE
Quantity:
20 000
Timer/PWM (TPM) Module
Because the HCS08 MCU is an 8-bit architecture, a coherency mechanism is built into the timer counter
for read operations. Whenever either byte of the counter is read (TPMxCNTH or TPMxCNTL), both bytes
are captured into a buffer so when the other byte is read, the value will represent the other byte of the count
at the time the first byte was read. The counter continues to count normally, but no new value can be read
from either byte until both bytes of the old count have been read.
The main timer counter can be reset manually at any time by writing any value to either byte of the timer
count TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency
mechanism in case only one byte of the counter was read before resetting the count.
10.5.2
Channel Mode Selection
Provided CPWMS = 0 (center-aligned PWM operation is not specified), the MSnB and MSnA control bits
in the channel n status and control registers determine the basic mode of operation for the corresponding
channel. Choices include input capture, output compare, and buffered edge-aligned PWM.
10.5.2.1 Input Capture Mode
With the input capture function, the TPM can capture the time at which an external event occurs. When an
active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter
into the channel value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any edge may
be chosen as the active edge that triggers an input capture.
When either byte of the 16-bit capture register is read, both bytes are latched into a buffer to support
coherent 16-bit accesses regardless of order. The coherency sequence can be manually reset by writing to
the channel status/control register (TPMxCnSC).
An input capture event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.
10.5.2.2 Output Compare Mode
With the output compare function, the TPM can generate timed pulses with programmable position,
polarity, duration, and frequency. When the counter reaches the value in the channel value registers of an
output compare channel, the TPM can set, clear, or toggle the channel pin.
In output compare mode, values are transferred to the corresponding timer channel value registers only
after both 8-bit bytes of a 16-bit register have been written. This coherency sequence can be manually reset
by writing to the channel status/control register (TPMxCnSC).
An output compare event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.
10.5.2.3 Edge-Aligned PWM Mode
This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS = 0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the setting in the modulus register
(TPMxMODH:TPMxMODL). The duty cycle is determined by the setting in the timer channel value
MC9S08GB/GT Data Sheet, Rev. 2.3
156
Freescale Semiconductor

Related parts for MC9S08GT60CFD