ATmega16HVB Atmel Corporation, ATmega16HVB Datasheet - Page 18

no-image

ATmega16HVB

Manufacturer Part Number
ATmega16HVB
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16HVB

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
8 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
17
Ext Interrupts
15
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
1.9
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
4.0 to 25
Operating Voltage (vcc)
4.0 to 25
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega16HVB-8X3
Manufacturer:
LT
Quantity:
51
Part Number:
ATmega16HVB-8X3
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
8.3.1
18
ATmega16HVB/32HVB
Data memory access times
The Atmel ATmega16HVB/32HVB is a complex microcontroller with more peripheral units than
can be supported within the 64 locations reserved in the Opcode for the IN and OUT instruc-
tions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.
The lower 1280/2304 data memory locations address both the Register File, the I/O memory,
Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register
File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory,
and the next 1K/2K locations address the internal data SRAM.
The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.
The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y-register or the Z-register.
When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.
The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and
the 1K/2Kbytes of internal data SRAM in the ATmega16HVB/32HVB are all accessible through
all these addressing modes. The Register File is described in
page
Figure 8-2.
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clk
19.
12.
Data memory map.
160 Ext I/O Reg.
64 I/O Registers
Data Memory
Internal SRAM
32 Registers
(1K/2K x 8)
0x04FF/0x08FF
0x0000 - 0x001F
0x0020 - 0x005F
0x0060 - 0x00FF
0x0100
CPU
cycles as described in
”General purpose Register File” on
Figure 8-3 on page
8042D–AVR–10/11

Related parts for ATmega16HVB