ATmega324PA Atmel Corporation, ATmega324PA Datasheet - Page 129

no-image

ATmega324PA

Manufacturer Part Number
ATmega324PA
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega324PA

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
32
Usb Speed
No
Usb Interface
No
Spi
3
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega324PA-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega324PA-ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega324PA-AU
Manufacturer:
ATM
Quantity:
5 000
Part Number:
ATmega324PA-AU
Manufacturer:
ATMEL
Quantity:
2 089
Part Number:
ATmega324PA-AU
Manufacturer:
Atmel
Quantity:
10 000
Company:
Part Number:
ATmega324PA-AU
Quantity:
5 000
Company:
Part Number:
ATmega324PA-AU
Quantity:
5 000
Part Number:
ATmega324PA-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega324PA-CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega324PA-MU
Manufacturer:
ATMEL
Quantity:
9 985
8272C–AVR–06/11
the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can
be calculated using the following equation:
In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on
PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.
Figure 16-9. Phase and Frequency Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
As
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.
Figure 16-9
TCNTn
OCnx
OCnx
Period
ATmega164A/PA/324A/PA/644A/PA/1284/P
shows the output generated is, in contrast to the phase correct mode, symmetri-
1
Figure
R
PFCPWM
2
16-9. The figure shows phase and frequency correct
=
3
log
---------------------------------- -
(
log
TOP
2 ( )
+
1
4
)
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnx1:0 = 2)
(COMnx1:0 = 3)
OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)
129

Related parts for ATmega324PA