AT91SAM7A3-AU Atmel, AT91SAM7A3-AU Datasheet - Page 398

IC ARM7 MCU FLASH 256K 100LQFP

AT91SAM7A3-AU

Manufacturer Part Number
AT91SAM7A3-AU
Description
IC ARM7 MCU FLASH 256K 100LQFP
Manufacturer
Atmel
Series
AT91SAMr
Datasheets

Specifications of AT91SAM7A3-AU

Core Processor
ARM7
Core Size
16/32-Bit
Speed
60MHz
Connectivity
CAN, I²C, MMC, SPI, SSC, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
62
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Ram Size
32K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Controller Family/series
AT91SAM7xx
No. Of I/o's
62
Ram Memory Size
32KB
Cpu Speed
60MHz
No. Of Timers
3
Rohs Compliant
Yes
Package
100LQFP
Device Core
ARM7TDMI
Family Name
91S
Maximum Speed
60 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
32 Bit
Number Of Programmable I/os
62
Interface Type
CAN/SPI/I2S/TWI/USART/USB
On-chip Adc
2(8-chx10-bit)
Number Of Timers
3
Processor Series
AT91SAMx
Core
ARM7TDMI
Data Ram Size
32 KB
Maximum Clock Frequency
60 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JTRACE-ARM-2M, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
AT91SAM-ICE, AT91-ISP, AT91SAM7A3-EK
Minimum Operating Temperature
- 40 C
Cpu Family
91S
Device Core Size
32b
Frequency (max)
60MHz
Total Internal Ram Size
32KB
# I/os (max)
62
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3V
Operating Supply Voltage (max)
3.6V
Operating Supply Voltage (min)
3V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
100
Package Type
LQFP
For Use With
AT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9AT91SAM7A3-EK - KIT EVAL FOR AT91SAM7A3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7A3-AU
Manufacturer:
MXIC
Quantity:
1 001
Part Number:
AT91SAM7A3-AU
Manufacturer:
Atmel
Quantity:
730
Part Number:
AT91SAM7A3-AU
Manufacturer:
Atmel
Quantity:
10 000
32.5.3
32.5.3.1
32.5.3.2
32.5.3.3
398
AT91SAM7A3 Preliminary
PWM Controller Operations
Initialization
Source Clock Selection Criteria
Changing the Duty Cycle or the Period
Before enabling the output channel, this channel must have been configured by the software
application:
It is possible to synchronize different channels by enabling them at the same time by means of
writing simultaneously several CHIDx bits in the PWM_ENA register.
The large number of source clocks can make selection difficult. The relationship between the
value in the Period Register (PWM_CPRDx) and the Duty Cycle Register (PWM_CDTYx) can
help the user in choosing. The event number written in the Period Register gives the PWM
accuracy. The Duty Cycle quantum cannot be lower than 1/PWM_CPRDx value. The higher
the value of PWM_CPRDx, the greater the PWM accuracy.
For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value
between 1 up to 14 in PWM_CDTYx Register. The resulting duty cycle quantum cannot be
lower than 1/15 of the PWM period.
It is possible to modulate the output waveform duty cycle or period.
To prevent unexpected output waveform, the user must use the update register
(PWM_CUPDx) to change waveform parameters while the channel is still enabled. The user
can write a new period value or duty cycle value in the update register (PWM_CUPDx). This
register holds the new value until the end of the current cycle and updates the value for the
next cycle. Depending on the CPD field in the PWM_CMRx register, PWM_CUPDx either
updates PWM_CPRDx or PWM_CDTYx. Note that even if the update register is used, the
period must not be smaller than the duty cycle.
• Configuration of the clock generator if DIVA and DIVB are required
• Selection of the clock for each channel (CPRE field in the PWM_CMRx register)
• Configuration of the waveform alignment for each channel (CALG field in the PWM_CMRx
• Configuration of the period for each channel (CPRD in the PWM_CPRDx register). Writing
• Configuration of the duty cycle for each channel (CDTY in the PWM_CDTYx register).
• Configuration of the output waveform polarity for each channel (CPOL in the PWM_CMRx
• Enable Interrupts (Writing CHIDx in the PWM_IER register)
• Enable the PWM channel (Writing CHIDx in the PWM_ENA register)
• In such a situation, all channels may have the same clock selector configuration and the
register)
in PWM_CPRDx Register is possible while the channel is disabled. After validation of the
channel, the user must use PWM_CUPDx Register to update PWM_CPRDx as explained
below.
Writing in PWM_CDTYx Register is possible while the channel is disabled. After validation
of the channel, the user must use PWM_CUPDx Register to update PWM_CDTYx as
explained below.
register)
same period specified.
6042E–ATARM–14-Dec-06

Related parts for AT91SAM7A3-AU