PIC18F4520-I/P Microchip Technology Inc., PIC18F4520-I/P Datasheet - Page 169

no-image

PIC18F4520-I/P

Manufacturer Part Number
PIC18F4520-I/P
Description
40 Pin, 32 KB Flash, 1536 RAM, 36 I/O
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC18F4520-I/P

A/d Inputs
13-Channel, 10-Bit
Comparators
2
Cpu Speed
10 MIPS
Eeprom Memory
256 Bytes
Input Output
36
Interface
I2C/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
40-pin PDIP
Programmable Memory
32K Bytes
Ram Size
1.5K Bytes
Speed
40 MHz
Timers
1-8-bit, 3-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4520-I/P
Manufacturer:
ST
Quantity:
104
Part Number:
PIC18F4520-I/P
Manufacturer:
MICROCH
Quantity:
20 000
Part Number:
PIC18F4520-I/PT
Manufacturer:
TI
Quantity:
14 300
Part Number:
PIC18F4520-I/PT
Manufacturer:
Microchip Technology
Quantity:
33 055
Part Number:
PIC18F4520-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4520-I/PT
Manufacturer:
MICROCHIP
Quantity:
510
Part Number:
PIC18F4520-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F4520-I/PT
0
17.3.6
In Slave mode, the data is transmitted and received as
the external clock pulses appear on SCK. When the
last bit is latched, the SSPIF interrupt flag bit is set.
Before enabling the module in SPI Slave mode, the
clock line must match the proper Idle state. The clock
line can be observed by reading the SCK pin. The Idle
state is determined by the CKP bit (SSPCON1<4>).
While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.
While in Sleep mode, the slave can transmit/receive
data. When a byte is received, the device will wake-up
from Sleep.
17.3.7
The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPCON1<3:0> = 04h). The pin must not be driven
low for the SS pin to function as an input. The data latch
FIGURE 17-4:
 2004 Microchip Technology Inc.
SS
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
Write to
SSPBUF
SDO
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SSPIF
Interrupt
Flag
SSPSR to
SSPBUF
SLAVE MODE
SLAVE SELECT
SYNCHRONIZATION
SLAVE SYNCHRONIZATION WAVEFORM
bit 7
bit 7
bit 6
PIC18F2420/2520/4420/4520
Preliminary
must be high. When the SS pin is low, transmission and
reception are enabled and the SDO pin is driven. When
the SS pin goes high, the SDO pin is no longer driven,
even if in the middle of a transmitted byte and becomes
a floating output. External pull-up/pull-down resistors
may be desirable depending on the application.
When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.
To emulate two-wire communication, the SDO pin can
be connected to the SDI pin. When the SPI needs to
operate as a receiver, the SDO pin can be configured
as an input. This disables transmissions from the SDO.
The SDI can always be left as an input (SDI function)
since it cannot create a bus conflict.
Note 1: When the SPI is in Slave mode with SS pin
2: If the SPI is used in Slave mode with CKE
control enabled (SSPCON<3:0> = 0100),
the SPI module will reset if the SS pin is set
to V
set, then the SS pin control must be
enabled.
bit 7
bit 7
DD
.
Next Q4 Cycle
after Q2
DS39631A-page 167
bit 0
bit 0

Related parts for PIC18F4520-I/P