PIC18F6621-I/PT Microchip Technology Inc., PIC18F6621-I/PT Datasheet - Page 227

no-image

PIC18F6621-I/PT

Manufacturer Part Number
PIC18F6621-I/PT
Description
64 PIN, 64 KB FLASH, 3840 RAM, 52 I/O
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC18F6621-I/PT

A/d Inputs
12-Channel, 10-Bit
Comparators
2
Cpu Speed
10 MIPS
Eeprom Memory
1024 Bytes
Input Output
54
Interface
I2C/SPI/UART/USART
Memory Type
Flash
Number Of Bits
8
Package Type
64-pin TQFP
Programmable Memory
64K Bytes
Ram Size
3.8K Bytes
Speed
40 MHz
Timers
2-8-bit, 3-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F6621-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F6621-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC18F6621-I/PT
Quantity:
2 850
19.2.4
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper byte reception cannot be
performed. The Auto-Wake-up feature allows the con-
troller to wake-up due to activity on the RXx/DTx line,
while the EUSART is operating in Asynchronous mode.
The Auto-Wake-up feature is enabled by setting the
WUE bit (BAUDCONx<1>). Once set, the typical receive
sequence on RXx/DTx is disabled and the EUSART
remains in an Idle state, monitoring for a wake-up event
independent of the CPU mode. A wake-up event
consists of a high-to-low transition on the RXx/DTx line.
(This coincides with the start of a Sync Break or a
Wake-up Signal character for the LIN protocol.)
Following a wake-up event, the module generates an
RC1IF interrupt. The interrupt is generated synchro-
nously to the Q clocks in normal operating modes
(Figure 19-7) and asynchronously, if the device is in
Sleep mode (Figure 19-8). The interrupt condition is
cleared by reading the RCREGx register.
The WUE bit is automatically cleared once a low-to-high
transition is observed on the RXx line following the
wake-up event. At this point, the EUSART module is in
Idle mode and returns to normal operation. This signals
to the user that the Sync Break event is over.
19.2.4.1
Since auto-wake-up functions by sensing rising edge
transitions on RXx/DTx, information with any state
changes before the Stop bit may signal a false end-of-
FIGURE 19-7:
FIGURE 19-8:
 2005 Microchip Technology Inc.
Note: The EUSART remains in Idle while the WUE bit is set.
Note 1:
RXx/DTx
WUE bit
RXx/DTx
WUE bit
RCxIF
OSC1
RCxIF
OSC1
2:
Line
Line
If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.
This sequence should not depend on the presence of Q clocks.
The EUSART remains in Idle while the WUE bit is set.
AUTO-WAKE-UP ON SYNC BREAK
CHARACTER
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Special Considerations Using
Auto-Wake-up
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Bit set by user
Bit set by user
Sleep Command Executed
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP
PIC18F6525/6621/8525/8621
Q1
Sleep Ends
character and cause data or framing errors. To work
properly, therefore, the initial character in the trans-
mission must be all ‘0’s. This can be 00h (8 bytes) for
standard RS-232 devices, or 000h (12 bits) for LIN bus.
Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., XT or HS mode). The Sync
Break (or Wake-up Signal) character must be of suffi-
cient length and be followed by a sufficient interval to
allow enough time for the selected oscillator to start
and provide proper initialization of the EUSART.
19.2.4.2
The timing of WUE and RCxIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSART in an Idle mode. The wake-up event causes
a receive interrupt by setting the RCxIF bit. The WUE
bit is cleared after this when a rising edge is seen on
RXx/DTx. The interrupt condition is then cleared by
reading the RCREGx register. Ordinarily, the data in
RCREGx will be dummy data and should be discarded.
The fact that the WUE bit has been cleared (or is still
set) and the RCxIF flag is set should not be used as an
indicator of the integrity of the data in RCREGx. Users
should consider implementing a parallel method in
firmware to verify received data integrity.
To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Cleared due to user read of RCREGx
Cleared due to user read of RCREGx
Special Considerations Using
the WUE Bit
Note 1
DS39612B-page 225
Auto-Cleared
Auto-Cleared

Related parts for PIC18F6621-I/PT