PIC16F887-I/PT Microchip Technology Inc., PIC16F887-I/PT Datasheet - Page 184

no-image

PIC16F887-I/PT

Manufacturer Part Number
PIC16F887-I/PT
Description
MCU, 8-Bit, 8KW Flash, 368 RAM, 36 I/O, TQFP-44
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC16F887-I/PT

A/d Inputs
14-Channel, 10-Bit
Comparators
2
Cpu Speed
5 MIPS
Eeprom Memory
256 Bytes
Frequency
20 MHz
Input Output
35
Interface
I2C/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin TFQP
Programmable Memory
14K Bytes
Ram Size
368 Bytes
Resistance, Drain To Source On
Bytes
Serial Interface
MSSP or EUSART
Speed
20 MHz
Timers
2-8-bit, 1-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F887-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F887-I/PT
Manufacturer:
Microchip
Quantity:
600
Part Number:
PIC16F887-I/PT
0
Company:
Part Number:
PIC16F887-I/PT
Quantity:
1 600
Company:
Part Number:
PIC16F887-I/PT
Quantity:
6 400
Company:
Part Number:
PIC16F887-I/PT
Quantity:
3 200
PIC16F882/883/884/886/887
13.3.4
In Slave mode, the data is transmitted and received as
the external clock pulses appear on SCK. When the
last bit is latched, the SSPIF interrupt flag bit of the
PIR1 register is set.
While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times, as
specified in the electrical specifications.
While in Sleep mode, the slave can transmit/receive
data. When a byte is received, the device will wake-up
from Sleep.
13.3.5
The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control
enabled (SSPCON<3:0> = 04h). The pin must not
be driven low for the SS pin to function as an input.
The Data Latch must be high. When the SS pin is
low, transmission and reception are enabled and
the SDO pin is driven. When the SS pin goes high,
FIGURE 13-3:
DS41291D-page 182
SS
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
Write to
SSPBUF
SDO
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SSPIF
SSPSR to
SSPBUF
SLAVE MODE
SLAVE SELECT
SYNCHRONIZATION
SLAVE SYNCHRONIZATION WAVEFORM
bit 7
bit 7
bit 6
Preliminary
the SDO pin is no longer driven, even if in the mid-
dle of a transmitted byte, and becomes a floating
output. External pull-up/pull-down resistors may be
desirable, depending on the application.
When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level, or clearing the SSPEN bit.
To emulate two-wire communication, the SDO pin can
be connected to the SDI pin. When the SPI needs to
operate as a receiver, the SDO pin can be configured
as an input. This disables transmissions from the SDO.
The SDI can always be left as an input (SDI function),
since it cannot create a bus conflict.
Note 1: When the SPI is in Slave mode with SS
2: If the SPI is used in Slave mode with CKE
pin control enabled (SSPCON<3:0> =
0100), the SPI module will reset if the SS
pin is set to V
set (SSPSTAT register), then the SS pin
control must be enabled.
bit 7
bit 7
© 2007 Microchip Technology Inc.
DD
.
Next Q4 Cycle
after Q2↓
bit 0
bit 0

Related parts for PIC16F887-I/PT