C8051T322-GQR Silicon Labs, C8051T322-GQR Datasheet - Page 220

no-image

C8051T322-GQR

Manufacturer Part Number
C8051T322-GQR
Description
8-bit Microcontrollers - MCU USB-OTP-16K-LQFP32
Manufacturer
Silicon Labs
Datasheet

Specifications of C8051T322-GQR

Rohs
yes
Core
8051
Processor Series
C8051
Data Bus Width
8 bit

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051T322-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
C8051T620/621/320/321/322/323
26.3.1. Data Transmission
Data transmission is double-buffered, and begins when software writes a data byte to the SBUF1 register.
Writing to SBUF1 places data in the Transmit Holding Register, and the Transmit Holding Register Empty
flag (THRE1) will be cleared to 0. If the UARTs shift register is empty (i.e. no transmission is in progress)
the data will be placed in the shift register, and the THRE1 bit will be set to 1. If a transmission is in prog-
ress, the data will remain in the Transmit Holding Register until the current transmission is complete. The
TI1 Transmit Interrupt Flag (SCON1.1) will be set at the end of any transmission (the beginning of the stop-
bit time). If enabled, an interrupt will occur when TI1 is set.
If the extra bit function is enabled (XBE1 = 1) and the parity function is disabled (PE1 = 0), the value of the
TBX1 (SCON1.3) bit will be sent in the extra bit position. When the parity function is enabled (PE1 = 1),
hardware will generate the parity bit according to the selected parity type (selected with S1PT[1:0]), and
append it to the data field. Note: when parity is enabled, the extra bit function is not available.
26.3.2. Data Reception
Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the
stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the
receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the
receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated
(OVR1 in register SCON1 will be set to logic 1). If the stop bit(s) were logic 0, the incoming data will not be
stored in the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and
the RI1 flag will be set. Note: when MCE1 = 1, RI1 will only be set if the extra bit was equal to 1. Data can
be read from the receive FIFO by reading the SBUF1 register. The SBUF1 register represents the oldest
byte in the FIFO. After SBUF1 is read, the next byte in the FIFO is immediately loaded into SBUF1, and
space is made available in the FIFO for another incoming byte. If enabled, an interrupt will occur when RI1
is set. RI1 can only be cleared to '0' by software when there is no more information in the FIFO. The rec-
ommended procedure to empty the FIFO contents is:
1. Clear RI1 to '0'
2. Read SBUF1
3. Check RI1, and repeat at Step 1 if RI1 is set to '1'.
If the extra bit function is enabled (XBE1 = 1) and the parity function is disabled (PE1 = 0), the extra bit for
the oldest byte in the FIFO can be read from the RBX1 bit (SCON1.2). If the extra bit function is not
enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBX1. When the parity func-
tion is enabled (PE1 = 1), hardware will check the received parity bit against the selected parity type
(selected with S1PT[1:0]) when receiving data. If a byte with parity error is received, the PERR1 flag will be
set to 1. This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not
available.
220
Figure 26.5. Typical UART Interconnect Diagram
COM Port
PC
RS-232
MCU
RX
Rev. 1.1
TX
TRANSLATOR
RS-232
LEVEL
OR
TX
RX
RX
TX
C8051Fxxx
C8051Fxxx

Related parts for C8051T322-GQR