EP1S10F484I6 Altera, EP1S10F484I6 Datasheet - Page 397

IC STRATIX FPGA 10K LE 484-FBGA

EP1S10F484I6

Manufacturer Part Number
EP1S10F484I6
Description
IC STRATIX FPGA 10K LE 484-FBGA
Manufacturer
Altera
Series
Stratix®r
Datasheets

Specifications of EP1S10F484I6

Number Of Logic Elements/cells
10570
Number Of Labs/clbs
1057
Total Ram Bits
920448
Number Of I /o
335
Voltage - Supply
1.425 V ~ 1.575 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Stratix
Number Of Logic Blocks/elements
10570
# I/os (max)
335
Frequency (max)
450.05MHz
Process Technology
0.13um (CMOS)
Operating Supply Voltage (typ)
1.5V
Logic Cells
10570
Ram Bits
920448
Operating Supply Voltage (min)
1.425V
Operating Supply Voltage (max)
1.575V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
484
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
Quantity:
3 000
Part Number:
EP1S10F484I6
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
0
Part Number:
EP1S10F484I6
0
Part Number:
EP1S10F484I6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6N
Manufacturer:
XILINX
0
Part Number:
EP1S10F484I6N
Manufacturer:
ALTERA
0
Introduction
External
Memory
Standards
Altera Corporation
June 2006
S52008-3.3
f
Stratix and Stratix GX devices support a broad range of external
memory interfaces such as double data rate (DDR) SDRAM, RLDRAM II,
quad data rate (QDR) SRAM, QDRII SRAM, zero bus turnaround (ZBT)
SRAM, and single data rate (SDR) SDRAM. The dedicated phase-shift
circuitry allows the Stratix and Stratix GX devices to interface at twice the
system clock speed with an external memory (up to 200 MHz/400 Mbps).
Typical I/O architectures transmit a single data word on each positive
clock edge and are limited to the associated clock speed using this
protocol. To achieve a 400-megabits per second (Mbps) transfer rate, a
SDR system requires a 400-MHz clock. Many new applications have
introduced a DDR I/O architecture as an alternative to SDR architectures.
While SDR architectures capture data on one edge of a clock, the DDR
architectures captures data on both the rising and falling edges of the
clock, doubling the throughput for a given clock frequency and
accelerating performance. For example, a 200-MHz clock can capture a
400-Mbps data stream, enhancing system performance and simplifying
board design.
Most current memory architectures use a DDR I/O interface. These DDR
memory standards cover a broad range of applications for embedded
processor systems, image processing, storage, communications, and
networking. This chapter describes the hardware features in Stratix and
Stratix GX devices that facilitate the high-speed memory interfacing for
each memory standard. It then briefly explains how each memory
standard uses the features of the Stratix and Stratix GX devices.
You can use this document with AN 329: ZBT SRAM Controller Reference
Design for Stratix & Stratix GX Devices, AN 342: Interfacing DDR SDRAM
with Stratix & Stratix GX Devices, and AN 349: QDR SRAM Controller
Reference Design for Stratix & Stratix GX Devices.
The following sections provide an overview on using the Stratix and
Stratix GX device external memory interfacing features.
DDR SDRAM
DDR SDRAM is a memory architecture that transmits and receives data
at twice the clock speed of traditional SDR architectures. These devices
transfer data on both the rising and falling edge of the clock signal.
Interfaces in Stratix &
3. External Memory
Stratix GX Devices
3–1

Related parts for EP1S10F484I6