EP1S10F484I6 Altera, EP1S10F484I6 Datasheet - Page 760

IC STRATIX FPGA 10K LE 484-FBGA

EP1S10F484I6

Manufacturer Part Number
EP1S10F484I6
Description
IC STRATIX FPGA 10K LE 484-FBGA
Manufacturer
Altera
Series
Stratix®r
Datasheets

Specifications of EP1S10F484I6

Number Of Logic Elements/cells
10570
Number Of Labs/clbs
1057
Total Ram Bits
920448
Number Of I /o
335
Voltage - Supply
1.425 V ~ 1.575 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Stratix
Number Of Logic Blocks/elements
10570
# I/os (max)
335
Frequency (max)
450.05MHz
Process Technology
0.13um (CMOS)
Operating Supply Voltage (typ)
1.5V
Logic Cells
10570
Ram Bits
920448
Operating Supply Voltage (min)
1.425V
Operating Supply Voltage (max)
1.575V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
484
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
Quantity:
3 000
Part Number:
EP1S10F484I6
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
0
Part Number:
EP1S10F484I6
0
Part Number:
EP1S10F484I6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6N
Manufacturer:
XILINX
0
Part Number:
EP1S10F484I6N
Manufacturer:
ALTERA
0
Configuration Schemes
11–42
Stratix Device Handbook, Volume 2
f
For more information on the JRunner software driver, see the JRunner
Software Driver: An Embedded Solution to the JTAG Configuration White
Paper and zip file.
Jam STAPL Programming & Test Language
The Jam
standard JESD-71, is a standard file format for in-system
programmability (ISP) purposes. Jam STAPL supports programming or
configuration of programmable devices and testing of electronic systems,
using the IEEE 1149.1 JTAG interface. Jam STAPL is a freely licensed open
standard.
Connecting the JTAG Chain to the Embedded Processor
There are two ways to connect the JTAG chain to the embedded processor.
The most straightforward method is to connect the embedded processor
directly to the JTAG chain. In this method, four of the processor pins are
dedicated to the JTAG interface, saving board space but reducing the
number of available embedded processor pins.
Figure 11–23
chain to an existing bus through an interface PLD. In this method, the
JTAG chain becomes an address on the existing bus. The processor then
reads from or writes to the address representing the JTAG chain.
TM
Standard Test and Programming Language (STAPL), JEDEC
illustrates the second method, which is to connect the JTAG
Altera Corporation
July 2005

Related parts for EP1S10F484I6