PIC12C672T-10/SM Microchip Technology, PIC12C672T-10/SM Datasheet - Page 456

no-image

PIC12C672T-10/SM

Manufacturer Part Number
PIC12C672T-10/SM
Description
IC MCU OTP 2KX14 A/D 8-SOIJ
Manufacturer
Microchip Technology
Series
PIC® 12Cr
Datasheets

Specifications of PIC12C672T-10/SM

Core Processor
PIC
Core Size
8-Bit
Speed
10MHz
Peripherals
POR, WDT
Number Of I /o
5
Program Memory Size
3.5KB (2K x 14)
Program Memory Type
OTP
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 4x8b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
8-SOIC (5.3mm Width), 8-SOP, 8-SOEIAJ
For Use With
XLT08SO-1 - SOCKET TRANSITION 8SOIC 150/208AC164312 - MODULE SKT FOR PM3 16SOIC309-1048 - ADAPTER 8-SOIC TO 8-DIP309-1047 - ADAPTER 8-SOIC TO 8-DIP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Connectivity
-
PICmicro MID-RANGE MCU FAMILY
24.6
DS31024A-page 24-14
Design Tips
Question 1:
Answer 1:
Polypropylene film capacitor is a good trade-off between cost, availability and performance
Question 2:
Answer 2:
A source is:
Southern Electronics Company
Telephone: (203) 876-7488
Question 3:
Answer 3:
That table is meant to be a good starting point, but does not include variation that is the result of
the device not operating at exactly 4 MHz; tolerance of the external capacitor and variations of
the Programmable Current Source, due to process and application temperature.
A conversion on the Bandgap Reference can be used to judge how to adjust the Programmable
Current Source Output to ensure proper A/D full scale conversions. Example code (routine
ad_optimize, in P14_RV10.ASM) for this adjustment is available with the PICDEM-14A Demo
Board, and may be also available on the Microchip web site.
Question 4:
Answer 4:
This may be caused by self heating of the DIE. Self heating of the DIE may be caused by a few
things, including:
• I/O sinking and/or sourcing significant amount of current
• Power dissipation of the device running
• Package type due to junction to ambient temperature coefficient of package
For best results the power dissipation should be kept low. Calibration is performed with the device
in a low power state.
Question 5:
Answer 5:
The high current components on your board may cause the ground potential difference across
the ground trace or ground plane. To minimize this effect, you should employ two system grounds
on the application board. The first ground, analog ground, used for the reference analog signals
(Slope A/D external capacitor ground, Resistor Divider ground, and etc.). No high current nor any
digital power returns should go through this analog ground system.
The second ground, digital ground, is used for all other digital logic in the system. The applica-
tion’s digital logic will inject noise onto this ground. Proper grounding techniques should be used
to minimize this noise.
These two grounds are connected at the PICmicro’s ground pin. Ideally the two grounds are
implemented using separate ground planes. In most cases, this can still be implemented on a
two layer board. One layer is used for both ground systems, where the two planes are separated
by a gap. The second layer is used as the trace layer.
(remember the PIC14C000 can operate in sleep mode)
What are some recommended Capacitor types?
Can you suggest some sources for Capacitors
I used the recommended capacitor and Programmable Current Source from
Table
I am using the PIC14C000 which also has the on-chip Temperature sensor.
The sensor results seem to be a little high.
My A/D conversion results seem affected by the operation of high current
components on my board. What can I do to minimize this?
24-2, and my A/D input range does not match.
1997 Microchip Technology Inc.

Related parts for PIC12C672T-10/SM