MC68HC16Z1CEH16 Freescale Semiconductor, MC68HC16Z1CEH16 Datasheet - Page 154

IC MCU 16BIT 16MHZ 132-PQFP

MC68HC16Z1CEH16

Manufacturer Part Number
MC68HC16Z1CEH16
Description
IC MCU 16BIT 16MHZ 132-PQFP
Manufacturer
Freescale Semiconductor
Series
HC16r
Datasheets

Specifications of MC68HC16Z1CEH16

Core Processor
CPU16
Core Size
16-Bit
Speed
16MHz
Connectivity
EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
16
Program Memory Type
ROMless
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
132-QFP
Processor Series
HC16Z
Core
CPU16
Data Bus Width
16 bit
Controller Family/series
68HC16
No. Of I/o's
26
Ram Memory Size
1KB
Cpu Speed
16MHz
No. Of Timers
2
Embedded Interface Type
QSPI, SCI
Rohs Compliant
Yes
Package
132PQFP
Family Name
HC16
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Number Of Programmable I/os
16
On-chip Adc
8-chx10-bit
Number Of Timers
11
Data Ram Size
1 KB
Interface Type
SCI, SPI, UART
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
1 085
Part Number:
MC68HC16Z1CEH16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
1 085
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
5 548
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
20 000
5.7 Reset
5.7.1 Reset Exception Processing
5.7.2 Reset Control Logic
5-48
Reset occurs when an active low logic level on the RESET pin is clocked into the SIM.
The RESET input is synchronized to the system clock. If there is no clock when
RESET is asserted, reset does not occur until the clock starts. Resets are clocked to
allow completion of write cycles in progress at the time RESET is asserted.
Reset procedures handle system initialization and recovery from catastrophic failure.
The MCU performs resets with a combination of hardware and software. The SIM de-
termines whether a reset is valid, asserts control signals, performs basic system con-
figuration and boot ROM selection based on hardware mode-select inputs, then
passes control to the CPU16.
The CPU16 processes resets as a type of asynchronous exception. An exception is
an event that preempts normal processing, and can be caused by internal or external
events. Exception processing makes the transition from normal instruction execution
to execution of a routine that deals with an exception. Each exception has an assigned
vector that points to an associated handler routine. These vectors are stored in the ex-
ception vector table. The exception vector table consists of 256 four-byte vectors and
occupies 512 bytes of address space. The exception vector table can be relocated in
memory by changing its base address in the vector base register (VBR). The CPU16
uses vector numbers to calculate displacement into the table. Refer to
tions
Reset is the highest-priority CPU16 exception. Unlike all other exceptions, a reset oc-
curs at the end of a bus cycle, and not at an instruction boundary. Handling resets in
this way prevents write cycles in progress at the time the reset signal is asserted from
being corrupted. However, any processing in progress is aborted by the reset excep-
tion, and cannot be restarted. Only essential reset tasks are performed during excep-
tion processing. Other initialization tasks must be accomplished by the exception
handler routine. Refer to
processing.
SIM reset control logic determines the cause of a reset, synchronizes request signals
to CLKOUT, and asserts reset control signals. Reset control logic can drive three dif-
ferent internal signals.
All resets are gated by CLKOUT. Asynchronous resets are assumed to be catastroph-
ic. An asynchronous reset can occur on any clock edge. Synchronous resets are timed
to occur at the end of bus cycles. The SIM bus monitor is automatically enabled for
synchronous resets. When a bus cycle does not terminate normally, the bus monitor
terminates it.
• EXTRST (external reset) drives the external reset pin.
• CLKRST (clock reset) resets the clock module.
• MSTRST (master reset) goes to all other internal circuits.
for more information.
Table 5-18
Freescale Semiconductor, Inc.
For More Information On This Product,
5.7.9 Reset Processing Summary
is a summary of reset sources.
SYSTEM INTEGRATION MODULE
Go to: www.freescale.com
for details on exception
M68HC16 Z SERIES
USER’S MANUAL
4.13 Excep-

Related parts for MC68HC16Z1CEH16