MC68HC16Z1CEH16 Freescale Semiconductor, MC68HC16Z1CEH16 Datasheet - Page 256

IC MCU 16BIT 16MHZ 132-PQFP

MC68HC16Z1CEH16

Manufacturer Part Number
MC68HC16Z1CEH16
Description
IC MCU 16BIT 16MHZ 132-PQFP
Manufacturer
Freescale Semiconductor
Series
HC16r
Datasheets

Specifications of MC68HC16Z1CEH16

Core Processor
CPU16
Core Size
16-Bit
Speed
16MHz
Connectivity
EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
16
Program Memory Type
ROMless
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
132-QFP
Processor Series
HC16Z
Core
CPU16
Data Bus Width
16 bit
Controller Family/series
68HC16
No. Of I/o's
26
Ram Memory Size
1KB
Cpu Speed
16MHz
No. Of Timers
2
Embedded Interface Type
QSPI, SCI
Rohs Compliant
Yes
Package
132PQFP
Family Name
HC16
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Number Of Programmable I/os
16
On-chip Adc
8-chx10-bit
Number Of Timers
11
Data Ram Size
1 KB
Interface Type
SCI, SPI, UART
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
1 085
Part Number:
MC68HC16Z1CEH16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
1 085
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
5 548
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
20 000
10.4.1.2 SCI Status Register
10.4.1.3 SCI Data Register
10.4.2 SCI Pins
10-16
SCCR1 contains a number of SCI configuration parameters, including transmitter and
receiver enable bits, interrupt enable bits, and operating mode enable bits. The
CPU16 can read and write this register at any time. The SCI can modify the RWU bit
under certain circumstances.
Changing the value of SCI control bits during a transfer may disrupt operation. Before
changing register values, allow the SCI to complete the current transfer, then disable
the receiver and transmitter.
The SCSR contains flags that show SCI operating conditions. These flags are cleared
either by SCI hardware or by a read/write sequence. To clear SCI transmitter flags,
read the SCSR and then write to the SCDR. To clear SCI receiver flags, read the
SCSR and then read the SCDR. A long-word read can consecutively access both the
SCSR and the SCDR. This action clears receiver status flag bits that were set at the
time of the read, but does not clear TDRE or TC flags.
If an internal SCI signal for setting a status bit comes after the CPU has read the as-
serted status bits, but before the CPU has written or read the SCDR, the newly set sta-
tus bit is not cleared. The SCSR must be read again with the bit set, and the SCDR
must be written to or read before the status bit is cleared.
Reading either byte of the SCSR causes all 16 bits to be accessed, and any status bit
already set in either byte will be cleared on a subsequent read or write of the SCDR.
The SCDR contains two data registers at the same address. The RDR is a read-only
register that contains data received by the SCI serial interface. The data comes into
the receive serial shifter and is transferred to the RDR. The TDR is a write-only register
that contains data to be transmitted. The data is first written to the TDR, then trans-
ferred to the transmit serial shifter, where additional format bits are added before
transmission.
Four pins are associated with the SCI: TXDA, TXDB, RXDA, and RXDB. The state of
the TE or RE bit in SCI control register 1 of each SCI submodule (SCCR1A, SCCR1B)
determines whether the associated pin is configured for SCI operation or general-pur-
pose I/O. The MDDR assigns each pin as either input or output. The WOMC bit in
SCCR1A or SCCR1B determines whether the associated RXD and TXD pins, when
configured as outputs, function as open-drain output pins or normal CMOS outputs.
The MDDR and WOMC assignments are valid regardless of whether the pins are con-
figured for SPI use or general-purpose I/O.
SCI pins are listed in
MULTICHANNEL COMMUNICATION INTERFACE
Freescale Semiconductor, Inc.
Table
For More Information On This Product,
10-5.
Go to: www.freescale.com
M68HC16 Z SERIES
USER’S MANUAL

Related parts for MC68HC16Z1CEH16