C8051F320 Silicon Laboratories Inc, C8051F320 Datasheet - Page 44

no-image

C8051F320

Manufacturer Part Number
C8051F320
Description
IC 8051 MCU 16K FLASH 32LQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F32xr
Datasheet

Specifications of C8051F320

Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
SMBus (2-Wire/I²C), SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
25
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
2.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 17x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-LQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F320
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F320
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
Part Number:
C8051F320-GQ
Manufacturer:
SiliconL
Quantity:
18 793
Part Number:
C8051F320-GQ
Manufacturer:
SILICON
Quantity:
1
Part Number:
C8051F320-GQ
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F320-GQR
Manufacturer:
SiliconL
Quantity:
1 000
Part Number:
C8051F320-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F320-GQR
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
Part Number:
C8051F320DK
Manufacturer:
SiliconL
Quantity:
4
Part Number:
C8051F320R
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
C8051F320/1
5.3.3. Settling Time Requirements
When the ADC0 input configuration is changed (i.e., a different AMUX0 selection is made), a minimum tracking
time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0
resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conver-
sion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion.
For most applications, these three SAR clocks will meet the minimum tracking time requirements.
Figure 5.4 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the
equivalent time constant for both input circuits is the same. The required ADC0 settling time for a given settling
accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or VDD with
respect to GND, R
Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)
t is the required settling time in seconds
R
n is the ADC resolution in bits (10).
44
TOTAL
is the sum of the AMUX0 resistance and any external source resistance.
Px.x
Px.x
TOTAL
RC
Differential Mode
MUX Select
Input
Select
MUX
= R
reduces to R
MUX
Equation 5.1. ADC0 Settling Time Requirements
R
R
* C
MUX
MUX
Figure 5.4. ADC0 Equivalent Input Circuits
SAMPLE
= 5k
= 5k
t
MUX
=
. See Table 5.1 for ADC0 minimum settling time requirements.
C
C
ln
SAMPLE
SAMPLE
------ -
SA
2
= 5pF
= 5pF
n
×
Rev. 1.1
R
TOTAL
C
Px.x
SAMPLE
Single-Ended Mode
RC
MUX Select
Input
= R
MUX
R
* C
MUX
SAMPLE
= 5k
C
SAMPLE
= 5pF

Related parts for C8051F320