LFXP2-5E-5QN208C Lattice, LFXP2-5E-5QN208C Datasheet - Page 41

FPGA - Field Programmable Gate Array 5K LUTs 146I/O Inst- on DSP 1.2V -5 Spd

LFXP2-5E-5QN208C

Manufacturer Part Number
LFXP2-5E-5QN208C
Description
FPGA - Field Programmable Gate Array 5K LUTs 146I/O Inst- on DSP 1.2V -5 Spd
Manufacturer
Lattice
Datasheet

Specifications of LFXP2-5E-5QN208C

Number Of Macrocells
5000
Maximum Operating Frequency
200 MHz
Number Of Programmable I/os
146
Data Ram Size
10 KB
Supply Voltage (max)
1.14 V
Supply Current
17 mA
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
0 C
Mounting Style
SMD/SMT
Supply Voltage (min)
1.26 V
Package / Case
PQFP-208
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LFXP2-5E-5QN208C
Manufacturer:
Lattice Semiconductor Corporation
Quantity:
10 000
Part Number:
LFXP2-5E-5QN208C
Manufacturer:
LATTICE
Quantity:
80
Part Number:
LFXP2-5E-5QN208C
Manufacturer:
LATTICE
Quantity:
20 000
Part Number:
LFXP2-5E-5QN208C
0
Lattice Semiconductor
and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port
consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V
operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. For more information, please see TN1141,
sysCONFIG Usage
flexiFLASH Device Configuration
The LatticeXP2 devices combine Flash and SRAM on a single chip to provide users with flexibility in device pro-
gramming and configuration. Figure 2-33 provides an overview of the arrangement of Flash and SRAM configura-
tion cells within the device. The remainder of this section provides an overview of these capabilities. See TN1141,
LatticeXP2 sysCONFIG Usage Guide
Figure 2-33. Overview of Flash and SRAM Configuration Cells Within LatticeXP2 Devices
At power-up, or on user command, data is transferred from the on-chip Flash memory to the SRAM configuration
cells that control the operation of the device. This is done with massively parallel buses enabling the parts to oper-
ate within microseconds of the power supplies reaching valid levels; this capability is referred to as Instant-On.
The on-chip Flash enables a single-chip solution eliminating the need for external boot memory. This Flash can be
programmed through either the JTAG or Slave SPI ports of the device. The SRAM configuration space can also be
infinitely reconfigured through the JTAG and Master SPI ports. The JTAG port is IEEE 1149.1 and IEEE 1532 com-
pliant.
As described in the EBR section of the data sheet, the FlashBAK capability of the parts enables the contents of the
EBR blocks to be written back into the Flash storage area without erasing or reprogramming other aspects of the
device configuration. Serial TAG memory is also available to allow the storage of small amounts of data such as
calibration coefficients and error codes.
For applications where security is important, the lack of an external bitstream provides a solution that is inherently
more secure than SRAM only FPGAs. This is further enhanced by device locking. The device can be in one of
three modes:
Guide.
Configuration
EBR Blocks
EBR Blocks
Decryption
and Device
SRAM
for a more detailed description.
Lock
Bits
2-38
Memory
TAG
LatticeXP2 Family Data Sheet
SPI and JTAG
Massively Parallel
Data Transfer
Device Lock
Single-Chip
Instant-ON
for Design
FlashBAK
Flash for
Solution
Security
for EBR
Storage
Architecture
CCJ
LatticeXP2
and can

Related parts for LFXP2-5E-5QN208C