ATtiny20 Atmel Corporation, ATtiny20 Datasheet - Page 81

no-image

ATtiny20

Manufacturer Part Number
ATtiny20
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny20

Flash (kbytes)
2 Kbytes
Pin Count
14
Max. Operating Frequency
12 MHz
Cpu
8-bit AVR
# Of Touch Channels
5
Hardware Qtouch Acquisition
Yes
Max I/o Pins
12
Ext Interrupts
12
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.12
Self Program Memory
NO
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
3
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny20-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny20-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny20-MMHR
Manufacturer:
ATMEL
Quantity:
20 000
Part Number:
ATtiny20-SSU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny20-XU
Manufacturer:
Atmel
Quantity:
904
12.5
8235B–AVR–04/11
Input Capture Unit
The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM1[3:0]) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see
The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM1[3:0] bits. TOV1 can be used for generating a CPU interrupt.
The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.
The Input Capture unit is illustrated by the block diagram shown in
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.
Figure 12-3. Input Capture Unit Block Diagram
When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 flag is automatically
ICPn
WRITE
ICRnH (8-bit)
TEMP (8-bit)
Comparator
Analog
ICRn (16-bit Register)
ACO*
ICRnL (8-bit)
ACIC*
DATA BUS
“Modes of Operation” on page
Canceler
Noise
ICNCn
(8-bit)
TCNTnH (8-bit)
TCNTn (16-bit Counter)
Detector
ICES1
Edge
Figure
86.
12-3. The elements of
TCNTnL (8-bit)
ATtiny20
ICFn (Int.Req.)
81

Related parts for ATtiny20