MC68HC711E20CFN2

Manufacturer Part NumberMC68HC711E20CFN2
DescriptionIC MCU 20K 2MHZ OTP 52-PLCC
ManufacturerFreescale Semiconductor
SeriesHC11
MC68HC711E20CFN2 datasheets
 


Specifications of MC68HC711E20CFN2

Core ProcessorHC11Core Size8-Bit
Speed2MHzConnectivitySCI, SPI
PeripheralsPOR, WDTNumber Of I /o38
Program Memory Size20KB (20K x 8)Program Memory TypeOTP
Eeprom Size512 x 8Ram Size768 x 8
Voltage - Supply (vcc/vdd)4.5 V ~ 5.5 VData ConvertersA/D 8x8b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case52-PLCCLead Free Status / RoHS StatusContains lead / RoHS non-compliant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Page 101
102
Page 102
103
Page 103
104
Page 104
105
Page 105
106
Page 106
107
Page 107
108
Page 108
109
Page 109
110
Page 110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
Page 107/242

Download datasheet (2Mb)Embed
PrevNext
7.4 Receive Operation
During receive operations, the transmit sequence is reversed. The serial shift register receives data and
transfers it to a parallel receive data register (SCDR) as a complete word. This double buffered operation
allows a character to be shifted in serially while another character is already in the SCDR. An advanced
data recovery scheme distinguishes valid data from noise in the serial data stream. The data input is
selectively sampled to detect receive data, and a majority voting circuit determines the value and integrity
of each bit. See
Figure
7-2.
7.5 Wakeup Feature
The wakeup feature reduces SCI service overhead in multiple receiver systems. Software for each
receiver evaluates the first character of each message. The receiver is placed in wakeup mode by writing
a 1 to the RWU bit in the SCCR2 register. While RWU is 1, all of the receiver-related status flags (RDRF,
IDLE, OR, NF, and FE) are inhibited (cannot become set). Although RWU can be cleared by a software
write to SCCR2, to do so would be unusual. Normally, RWU is set by software and is cleared
automatically with hardware. Whenever a new message begins, logic alerts the sleeping receivers to
wake up and evaluate the initial character of the new message.
Two methods of wakeup are available:
Idle-line wakeup
Address-mark wakeup
During idle-line wakeup, a sleeping receiver awakens as soon as the RxD line becomes idle. In the
address-mark wakeup, logic 1 in the most significant bit (MSB) of a character wakes up all sleeping
receivers.
7.5.1 Idle-Line Wakeup
To use the receiver wakeup method, establish a software addressing scheme to allow the transmitting
devices to direct a message to individual receivers or to groups of receivers. This addressing scheme can
take any form as long as all transmitting and receiving devices are programmed to understand the same
scheme. Because the addressing information is usually the first frame(s) in a message, receivers that are
not part of the current task do not become burdened with the entire set of addressing frames. All receivers
are awake (RWU = 0) when each message begins. As soon as a receiver determines that the message
is not intended for it, software sets the RWU bit (RWU = 1), which inhibits further flag setting until the RxD
line goes idle at the end of the message. As soon as an idle line is detected by receiver logic, hardware
automatically clears the RWU bit so that the first frame of the next message can be received. This type
of receiver wakeup requires a minimum of one idle-line frame time between messages and no idle time
between frames in a message.
Freescale Semiconductor
M68HC11E Family Data Sheet, Rev. 5.1
Receive Operation
107