MC68HC711E20CFN2

Manufacturer Part NumberMC68HC711E20CFN2
DescriptionIC MCU 20K 2MHZ OTP 52-PLCC
ManufacturerFreescale Semiconductor
SeriesHC11
MC68HC711E20CFN2 datasheets
 


Specifications of MC68HC711E20CFN2

Core ProcessorHC11Core Size8-Bit
Speed2MHzConnectivitySCI, SPI
PeripheralsPOR, WDTNumber Of I /o38
Program Memory Size20KB (20K x 8)Program Memory TypeOTP
Eeprom Size512 x 8Ram Size768 x 8
Voltage - Supply (vcc/vdd)4.5 V ~ 5.5 VData ConvertersA/D 8x8b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case52-PLCCLead Free Status / RoHS StatusContains lead / RoHS non-compliant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Page 81
82
Page 82
83
Page 83
84
Page 84
85
Page 85
86
Page 86
87
Page 87
88
Page 88
89
Page 89
90
Page 90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
Page 90/242

Download datasheet (2Mb)Embed
PrevNext
Resets and Interrupts
5.5.4 Software Interrupt (SWI)
SWI is an instruction, and thus cannot be interrupted until complete. SWI is not inhibited by the global
mask bits in the CCR. Because execution of SWI sets the I mask bit, once an SWI interrupt begins, other
interrupts are inhibited until SWI is complete, or until user software clears the I bit in the CCR.
5.5.5 Maskable Interrupts
The maskable interrupt structure of the MCU can be extended to include additional external interrupt
sources through the IRQ pin. The default configuration of this pin is a low-level sensitive wired-OR
network. When an event triggers an interrupt, a software accessible interrupt flag is set. When enabled,
this flag causes a constant request for interrupt service. After the flag is cleared, the service request is
released.
5.5.6 Reset and Interrupt Processing
Figure 5-5
and
Figure 5-6
illustrate the reset and interrupt process.
Figure 5-5
illustrates how the CPU
begins from a reset and how interrupt detection relates to normal opcode fetches.
Figure 5-6
is an
expansion of a block in
Figure 5-5
and illustrates interrupt priorities.
Figure 5-7
shows the resolution of
interrupt sources within the SCI subsystem.
5.6 Low-Power Operation
Both stop mode and wait mode suspend CPU operation until a reset or interrupt occurs. Wait mode
suspends processing and reduces power consumption to an intermediate level. Stop mode turns off all
on-chip clocks and reduces power consumption to an absolute minimum while retaining the contents of
the entire RAM array.
5.6.1 Wait Mode
The WAI opcode places the MCU in wait mode, during which the CPU registers are stacked and CPU
processing is suspended until a qualified interrupt is detected. The interrupt can be an external IRQ, an
XIRQ, or any of the internally generated interrupts, such as the timer or serial interrupts. The on-chip
crystal oscillator remains active throughout the wait standby period.
The reduction of power in the wait condition depends on how many internal clock signals driving on-chip
peripheral functions can be shut down. The CPU is always shut down during wait. While in the wait state,
the address/data bus repeatedly runs read cycles to the address where the CCR contents were stacked.
The MCU leaves the wait state when it senses any interrupt that has not been masked.
The free-running timer system is shut down only if the I bit is set to 1 and the COP system is disabled by
NOCOP being set to 1. Several other systems also can be in a reduced power-consumption state
depending on the state of software-controlled configuration control bits. Power consumption by the
analog-to-digital (A/D) converter is not affected significantly by the wait condition. However, the A/D
converter current can be eliminated by writing the ADPU bit to 0. The SPI system is enabled or disabled
by the SPE control bit. The SCI transmitter is enabled or disabled by the TE bit, and the SCI receiver is
enabled or disabled by the RE bit. Therefore, the power consumption in wait is dependent on the
particular application.
M68HC11E Family Data Sheet, Rev. 5.1
90
Freescale Semiconductor