MC68HC711E20CFN2

Manufacturer Part NumberMC68HC711E20CFN2
DescriptionIC MCU 20K 2MHZ OTP 52-PLCC
ManufacturerFreescale Semiconductor
SeriesHC11
MC68HC711E20CFN2 datasheets
 

Specifications of MC68HC711E20CFN2

Core ProcessorHC11Core Size8-Bit
Speed2MHzConnectivitySCI, SPI
PeripheralsPOR, WDTNumber Of I /o38
Program Memory Size20KB (20K x 8)Program Memory TypeOTP
Eeprom Size512 x 8Ram Size768 x 8
Voltage - Supply (vcc/vdd)4.5 V ~ 5.5 VData ConvertersA/D 8x8b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case52-PLCCLead Free Status / RoHS StatusContains lead / RoHS non-compliant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
Page 191
192
Page 192
193
Page 193
194
Page 194
195
Page 195
196
Page 196
197
Page 197
198
Page 198
199
Page 199
200
Page 200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
Page 199/242

Download datasheet (2Mb)Embed
PrevNext
Main Bootloader Program
illustrates the extreme measures used in the bootloader firmware to minimize memory usage. However,
such measures are not usually considered good programming technique because they are misleading to
someone trying to understand the program or use it as an example.
After initialization, a break character is transmitted [3] by the SCI. By connecting the TxD pin to the RxD
pin (with a pullup because of port D wired-OR mode), this break will be received as a $00 character and
cause an immediate jump [4] to the start of the on-chip EEPROM ($B600 in the MC68HC711E9). This
feature is useful to pass control to a program in EEPROM essentially from reset. Refer to
Common
Bootstrap Mode Problems
before using this feature.
If the first character is received as $FF, the baud rate is assumed to be the default rate (7812 baud at a
2-MHz E-clock rate). If $FF was sent at 1200 baud by the host, the SCI will receive the character as $E0
or $C0 because of the baud rate mismatch, and the bootloader will switch to 1200 baud [5] for the rest of
the download operation. When the baud rate is switched to 1200 baud, the delay constant used to monitor
the intercharacter delay also must be changed to reflect the new character time.
At [6], the Y index register is initialized to $0000 to point to the start of on-chip RAM. The index register Y
is used to keep track of where the next received data byte will be stored in RAM. The main loop for loading
begins at [7].
The number of data bytes in the downloaded program can be any number between 0 and 512 bytes (the
size of on-chip RAM). This procedure is called "variable-length download" and is accomplished by ending
the download sequence when an idle time of at least four character times occurs after the last character
to be downloaded. In M68HC11 Family members which have 256 bytes of RAM, the download length is
fixed at exactly 256 bytes plus the leading $FF character.
The intercharacter delay counter is started [8] by loading the delay constant from TOC1 into the X index
register. The 19-E-cycle wait loop is executed repeatedly until either a character is received [9] or the
allowed intercharacter delay time expires [10]. For 7812 baud, the delay constant is 10,241 E cycles (539
x 19 E cycles per loop). Four character times at 7812 baud is 10,240 E cycles (baud prescale of 4 x baud
divider of 4 x 16 internal SCI clocks/bit time x 10 bit times/character x 4 character times). The delay from
reset to the initial $FF character is not critical since the delay counter is not started until after the first
character ($FF) is received.
To terminate the bootloading sequence and jump to the start of RAM without downloading any data to the
on-chip RAM, simply send $FF and nothing else. This feature is similar to the jump to EEPROM at [4]
except the $FF causes a jump to the start of RAM. This procedure requires that the RAM has been loaded
with a valid program since it would make no sense to jump to a location in uninitialized memory.
After receiving a character, the downloaded byte is stored in RAM [11]. The data is transmitted back to
the host [12] as an indication that the download is progressing normally. At [13], the RAM pointer is
incremented to the next RAM address. If the RAM pointer has not passed the end of RAM, the main
download loop (from [7] to [14]) is repeated.
When all data has been downloaded, the bootloader goes to [16] because of an intercharacter delay
timeout [10] or because the entire 512-byte RAM has been filled [15]. At [16], the X and Y index registers
are set up for calling the PROGRAM utility routine, which saves the user from having to do this in a
downloaded program. The PROGRAM utility is fully explained in
EPROM Programming
Utility. The final
step of the bootloader program is to jump to the start of RAM [17], which starts the user’s downloaded
program.
M68HC11 Bootstrap Mode, Rev. 1.1
Freescale Semiconductor
199