ATMEGA324P-A15MZ Atmel, ATMEGA324P-A15MZ Datasheet - Page 12

MCU AVR 32KB FLASH 15MHZ 44-VQFN

ATMEGA324P-A15MZ

Manufacturer Part Number
ATMEGA324P-A15MZ
Description
MCU AVR 32KB FLASH 15MHZ 44-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA324P-A15MZ

Package / Case
44-VQFN Exposed Pad
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Number Of I /o
32
Eeprom Size
1K x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
2K x 8
Program Memory Size
32KB (32K x 8)
Data Converters
A/D 8x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Connectivity
I²C, SPI, UART/USART
Core Size
8-Bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
The X-register, Y-
register and Z-register
Stack Pointer
12
ATmega32(L)
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the Data Space. The three indirect
address registers X, Y, and Z are defined as described in
Figure 5. The X-, Y-, and Z-registers
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above $60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.
X - register
Y - register
Z - register
Bit
Read/Write
Initial Value
SP15
SP7
R/W
R/W
15
7
0
0
15
7
R27 ($1B)
15
7
R29 ($1D)
15
7
R31 ($1F)
SP14
SP6
R/W
R/W
14
6
0
0
SP13
R/W
R/W
SP5
13
5
0
0
XH
YH
ZH
0
SP12
R/W
R/W
SP4
12
4
0
0
SP11
SP3
R/W
R/W
11
3
0
0
0
0
7
R26 ($1A)
7
R28 ($1C)
7
R30 ($1E)
SP10
SP2
R/W
R/W
10
Figure
2
0
0
5.
SP9
SP1
R/W
R/W
9
1
0
0
XL
YL
ZL
0
SP8
SP0
R/W
R/W
8
0
0
0
SPH
SPL
2503N–AVR–06/08
0
0
0
0
0

Related parts for ATMEGA324P-A15MZ