ATmega168A Atmel Corporation, ATmega168A Datasheet - Page 117

no-image

ATmega168A

Manufacturer Part Number
ATmega168A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega168A

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL
Quantity:
464
Part Number:
ATmega168A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-AU
Manufacturer:
Microchip Technology
Quantity:
12 280
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL
Quantity:
750
Part Number:
ATmega168A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-AUR
Manufacturer:
Microchip Technology
Quantity:
420
Part Number:
ATmega168A-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCU
Manufacturer:
Microchip Technology
Quantity:
309
Part Number:
ATmega168A-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCUR
Manufacturer:
Microchip Technology
Quantity:
469
Part Number:
ATmega168A-MMH
Manufacturer:
Microchip Technology
Quantity:
2 027
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
1 000
Company:
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
4 800
16.2.2
16.3
8271D–AVR–05/11
Accessing 16-bit Registers
Definitions
put Compare Units” on page
Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.
The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
”Analog Comparator” on page
Canceler) for reducing the chance of capturing noise spikes.
The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.
The following definitions are used extensively throughout the section:
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.
Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.
To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.
The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.
BOTTOM
MAX
TOP
The counter reaches the BOTTOM when it becomes 0x0000.
The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).
The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is
dependent of the mode of operation.
ATmega48A/PA/88A/PA/168A/PA/328/P
124. The compare match event will also set the Compare Match
248) The Input Capture unit includes a digital filtering unit (Noise
117

Related parts for ATmega168A