ATmega168A Atmel Corporation, ATmega168A Datasheet - Page 130
ATmega168A
Manufacturer Part Number
ATmega168A
Description
Manufacturer
Atmel Corporation
Specifications of ATmega168A
Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
Available stocks
Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL
Quantity:
464
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega168A-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
1 000
- Current page: 130 of 567
- Download datasheet (21Mb)
16.9.4
8271D–AVR–05/11
Phase Correct PWM Mode
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.
In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a inverted PWM and an non-inverted PWM output
can be generated by setting the COM1x1:0 to three (see
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits.)
A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of f
similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.
The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
ATmega48A/PA/88A/PA/168A/PA/328/P
OC
1
A
= f
f
clk_I/O
OCnxPWM
/2 when OCR1A is set to zero (0x0000). This feature is
=
---------------------------------- -
N
⋅
(
f
1
clk_I/O
+
TOP
Table on page
)
137). The actual OC1x
130
Related parts for ATmega168A
Image
Part Number
Description
Manufacturer
Datasheet
Request
R
Part Number:
Description:
INTERVAL AND WIPE/WASH WIPER CONTROL IC WITH DELAY
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
Low-Voltage Voice-Switched IC for Hands-Free Operation
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
MONOLITHIC INTEGRATED FEATUREPHONE CIRCUIT
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
AM-FM Receiver IC U4255BM-M
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
Monolithic Integrated Feature Phone Circuit
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
Multistandard Video-IF and Quasi Parallel Sound Processing
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
High-performance EE PLD
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
8-bit Flash Microcontroller
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
2-Wire Serial EEPROM
Manufacturer:
ATMEL Corporation
Datasheet:
Part Number:
Description:
U6046BREAR WINDOW HEATING TIMER / LONG-TERM TIMER
Manufacturer:
ATMEL Corporation
Datasheet: