ATmega168A Atmel Corporation, ATmega168A Datasheet - Page 310

no-image

ATmega168A

Manufacturer Part Number
ATmega168A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega168A

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL
Quantity:
464
Part Number:
ATmega168A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-AU
Manufacturer:
Microchip Technology
Quantity:
12 280
Part Number:
ATmega168A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-AUR
Manufacturer:
Microchip Technology
Quantity:
420
Part Number:
ATmega168A-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCU
Manufacturer:
Microchip Technology
Quantity:
309
Part Number:
ATmega168A-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCUR
Manufacturer:
Microchip Technology
Quantity:
469
Part Number:
ATmega168A-MMH
Manufacturer:
Microchip Technology
Quantity:
2 027
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
1 000
Company:
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
4 800
28.7.10
28.7.11
8271D–AVR–05/11
Programming the Extended Fuse Bits
Programming the Lock Bits
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.
The algorithm for programming the Extended Fuse bits is as follows (refer to
Flash” on page 306
1. 1. A: Load Command “0100 0000”.
2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.
4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. 5. Set BS2 to “0”. This selects low data byte.
Figure 28-5. Programming the FUSES Waveforms
The algorithm for programming the Lock bits is as follows (refer to
page 306
1. A: Load Command “0010 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.
RESET +12V
RDY/BSY
PAGEL
XTAL1
DATA
for details on Command and Data loading):
XA1
XA0
BS1
BS2
WR
OE
0x40
A
for details on Command and Data loading):
ATmega48A/PA/88A/PA/168A/PA/328/P
DATA
C
Write Fuse Low byte
XX
0x40
A
DATA
C
Write Fuse high byte
XX
”Programming the Flash” on
0x40
A
DATA
C
Write Extended Fuse byte
”Programming the
XX
310

Related parts for ATmega168A