ATmega168A Atmel Corporation, ATmega168A Datasheet - Page 289

no-image

ATmega168A

Manufacturer Part Number
ATmega168A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega168A

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL
Quantity:
464
Part Number:
ATmega168A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega168A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
1 000
27.8.11
27.8.12
8271D–AVR–05/11
Preventing Flash Corruption
Programming Time for Flash when Using SPM
Table 27-5.
Note:
During periods of low V
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.
A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.
Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):
1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
3. Keep the AVR core in Power-down sleep mode during periods of low V
The calibrated RC Oscillator is used to time Flash accesses.
gramming time for Flash accesses from the CPU.
Table 27-6.
Note:
Signature Byte
Device Signature Byte 1
Device Signature Byte 2
Device Signature Byte 3
RC Oscillator Calibration Byte
Flash write (Page Erase, Page Write, and
write Lock bits by SPM)
bits to prevent any Boot Loader software updates.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low V
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.
All other addresses are reserved for future use.
1. Minimum and maximum programming time is per individual operation.
Signature Row Addressing
SPM Programming Time
Symbol
ATmega48A/PA/88A/PA/168A/PA/328/P
CC
, the Flash program can be corrupted because the supply voltage is
(1)
Min. Programming Time
Z-Pointer Address
0x0000
0x0002
0x0004
0x0001
3.7ms
CC
Table 27-6
reset protection circuit can be
Max Programming Time
shows the typical pro-
CC
. This will pre-
4.5ms
289

Related parts for ATmega168A