ATmega168A Atmel Corporation, ATmega168A Datasheet - Page 229

no-image

ATmega168A

Manufacturer Part Number
ATmega168A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega168A

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL
Quantity:
464
Part Number:
ATmega168A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega168A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168A-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega168A-PU
Manufacturer:
ATMEL
Quantity:
1 000
22.7
22.7.1
8271D–AVR–05/11
Transmission Modes
Master Transmitter Mode
The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.
The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:
In
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to
zero. At these points, actions must be taken by the application to continue or complete the TWI
transfer. The TWI transfer is suspended until the TWINT Flag is cleared by software.
When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in
these tables.
In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see
The format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.
Figure 22-12
S: START condition
Rs: REPEATED START condition
R: Read bit (high level at SDA)
W: Write bit (low level at SDA)
A: Acknowledge bit (low level at SDA)
A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte
P: STOP condition
SLA: Slave Address
Figure
22-11). In order to enter a Master mode, a START condition must be transmitted.
to
Figure
Table 22-2
ATmega48A/PA/88A/PA/168A/PA/328/P
22-18, circles are used to indicate that the TWINT Flag is set. The
to
Table
22-5. Note that the prescaler bits are masked to zero in
229

Related parts for ATmega168A