AD9548/PCBZ Analog Devices Inc, AD9548/PCBZ Datasheet - Page 27

no-image

AD9548/PCBZ

Manufacturer Part Number
AD9548/PCBZ
Description
Clock Generator Evaluation Board
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD9548/PCBZ

Silicon Manufacturer
Analog Devices
Application Sub Type
Network Clock Generator/Synchronizer
Kit Application Type
Clock & Timing
Silicon Core Number
AD9548
Kit Contents
Board
Main Purpose
Timing, Clock Generator
Embedded
No
Utilized Ic / Part
AD9548
Primary Attributes
62.5 ~ 450 MHz Output Frequency
Secondary Attributes
SPI and I2C Compatible Control Port
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
REFERENCE CLOCK INPUTS
Four pairs of pins provide access to the reference clock receivers.
Each pair is configurable either as a single differential receiver
or as two independent single-ended receivers. To accommodate
input signals with slow rising and falling edges, both the
differential and single-ended input receivers employ hysteresis.
Hysteresis also ensures that a disconnected or floating input
does not cause the receiver to oscillate spontaneously.
When configured for differential operation, the input receivers
accommodate either ac- or dc-coupled input signals. The
receiver is internally dc biased in order to handle ac-coupled
operation.
When configured for single-ended operation, the input
receivers exhibit a pull-down load of 45 kΩ (typical). Three
user-programmable threshold voltage ranges are available for
each single-ended receiver.
REFERENCE MONITORS
The reference monitors depend on a known and accurate
system clock period. Therefore, the functioning of the reference
monitors is not reliable until the system clock is stable. To avoid
an incorrect valid indication, the reference monitors indicate
fault status until the system clock stability timer expires (see the
System Clock Stability Timer section).
Reference Period Monitor
Each reference input has a dedicated monitor that repeatedly
measures the reference period. The AD9548 uses the reference
period measurements to determine the validity of the reference
based on a set of user provided parameters in the profile
register area of the register map (see the Profile Registers
(Register 0600 to Register 07FF) section). The AD9548 also
uses the reference period monitor to assign a particular
reference to a profile when the user programs the device for
automatic profile assignment.
The monitor works by comparing the measured period of a
particular reference input with the parameters stored in the
profile register assigned to that same reference input. The
parameters include the reference period, an inner tolerance, and
an outer tolerance. A 50-bit number defines the reference
period in units of femtoseconds. The 50-bit range allows for a
reference period entry of up to 1.125 sec. However, an actual
reference signal with a period in excess of 1 sec is beyond the
recommended operating range of the device. A
20-bit number defines the inner and outer tolerances. The value
stored in the register is the reciprocal of the tolerance
specification. For example, a tolerance specification of 50 ppm
yields a register value of 1/(50 ppm) = 1/0.000050 = 20,000
(0x04E20).
Rev. A | Page 27 of 112
The use of two tolerance values provides hysteresis for the
monitor decision logic. The inner tolerance applies to a
previously faulted reference and specifies the largest period
tolerance that a previously faulted reference can exhibit before it
qualifies as nonfaulted. The outer tolerance applies to an already
nonfaulted reference. It specifies the largest period tolerance
that a nonfaulted reference can exhibit before being faulted.
To produce decision hysteresis, the inner tolerance must be less
than the outer tolerance. That is, a faulted reference must meet
tighter requirements to become nonfaulted than a nonfaulted
reference must meet to become faulted.
Reference Validation Timer
Each reference input has a dedicated validation timer. The
validation timer establishes the amount of time that a
previously faulted reference must remain fault free before the
AD9548 declares it nonfaulted. The timeout period of the
validation timer is programmable via a 16-bit register (see the
validation register contained within each of the eight profile
registers in the register map, Address 0600 to Address 07FF).
The 16-bit number stored in the validation register represents
units of milliseconds, which yields a maximum timeout period
of 65,535 ms.
Note that a validation period of 0 must be programmed to
disable the validation timer. With the validation timer disabled,
the user must validate a reference manually via the force
validation timeout register (Address 0A0E).
Reference Redetect Timer
Each reference input has a dedicated redetect timer. The
redetect timer is useful only with the device programmed for
automatic profile selection. The redetect timer establishes the
amount of time that a reference must remain faulted before the
AD9548 attempts to reassign it to a new profile. The timeout
period of the redetect timer is programmable via a 16-bit
register (see the redetect timeout register contained within each
of the eight profile registers in the register map, Address 0600 to
Address 07FF). The 16-bit number stored in the redetect
timeout register represents units of milliseconds, which yields a
maximum timeout period of 65,535 ms.
Note that a timeout period of 0 must be programmed to disable
the redetect timer.
Reference Validation Override Control
Register 0A0E to Register 0A10 provide the user with the ability
to override the reference validation logic enabling a certain level
of troubleshooting capability. Each of the eight input references
has a dedicated block of validation logic as shown in Figure 34.
The state of the valid signal at the output is what defines a
particular reference as valid (1) or not (0), which includes the
validation period (if activated) as prescribed by the validation
timer. The override controls are the three control bits on the left
side of the diagram.
AD9548

Related parts for AD9548/PCBZ