MCU AVR 16K FLASH 16MHZ 40-PDIP

ATMEGA16A-PU

Manufacturer Part NumberATMEGA16A-PU
DescriptionMCU AVR 16K FLASH 16MHZ 40-PDIP
ManufacturerAtmel
SeriesAVR® ATmega
ATMEGA16A-PU datasheets
 


Specifications of ATMEGA16A-PU

Core ProcessorAVRCore Size8-Bit
Speed16MHzConnectivityI²C, SPI, UART/USART
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber Of I /o32
Program Memory Size16KB (8K x 16)Program Memory TypeFLASH
Eeprom Size512 x 8Ram Size1K x 8
Voltage - Supply (vcc/vdd)2.7 V ~ 5.5 VData ConvertersA/D 8x10b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case40-DIP (0.600", 15.24mm)Processor SeriesATMEGA16x
CoreAVR8Data Bus Width8 bit
Data Ram Size1 KBInterface Type2-Wire/SPI/USART
Maximum Clock Frequency16 MHzNumber Of Programmable I/os32
Number Of Timers3Maximum Operating Temperature+ 85 C
Mounting StyleThrough Hole3rd Party Development ToolsEWAVR, EWAVR-BL
Development Tools By SupplierATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKITMinimum Operating Temperature- 40 C
On-chip Adc8-ch x 10-bitPackage40PDIP
Device CoreAVRFamily NameATmega
Maximum Speed16 MHzOperating Supply Voltage3.3|5 V
Controller Family/seriesAVR MEGANo. Of I/o's32
Eeprom Memory Size512ByteRam Memory Size1KB
Cpu Speed16MHzRohs CompliantYes
For Use WithATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KITLead Free Status / RoHS StatusLead free / RoHS Compliant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
Page 171
172
Page 172
173
Page 173
174
Page 174
175
Page 175
176
Page 176
177
Page 177
178
Page 178
179
Page 179
180
Page 180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
Page 179/352

Download datasheet (8Mb)Embed
PrevNext
Figure 20-6. Typical Data Transmission
SDA
SCL
20.4
Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several Masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more Masters initiate
a transmission at the same time. Two problems arise in multi-master systems:
• An algorithm must be implemented allowing only one of the Masters to complete the
transmission. All other Masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
Master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning Master. The fact that multiple
Masters have started transmission at the same time should not be detectable to the Slaves,
i.e., the data being transferred on the bus must not be corrupted.
• Different Masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all Masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.
The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all Masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all Masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.
Figure 20-7. SCL Synchronization between Multiple Masters
Arbitration is carried out by all Masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
8154B–AVR–07/09
Addr MSB
Addr LSB
R/W
ACK
1
2
7
8
9
START
SLA+R/W
TA
low
SCL from
Master A
SCL from
Master B
SCL bus
Line
TB
Masters Start
Counting Low Period
ATmega16A
Data MSB
Data LSB
1
2
7
8
Data Byte
TA
high
TB
low
high
Masters Start
Counting High Period
ACK
9
STOP
179